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ancreatic cancer is one of the
Pdeadliest cancers worldwide,
with a 5-year survival rate of less than
5%.1 Pancreatic ductal adenocarci-
noma (PDAC), the most common and
aggressive type of pancreatic cancer,
has become a medical emergency in
the past decades. PDAC cannot be
effectively prevented or screened for
and is associated with 98% life ex-
pectancy loss and a 30% increase in
disability-adjusted life-years.2,3 Still,
research funding for PDAC remains
significantly lower than for other can-
cer types, leading it to be flagged as a
neglected cancer by both the European
Commission and the United States
Congress.2

Cross-sectional imaging, namely
computed tomography (CT), magnetic
resonance (MR), 18

fluoro-2-deoxy-D-
glucose positron emission
tomography–computed tomography
(18FDG PET-CT), and endoscopic ul-
trasound (EUS), play a crucial role in
PDAC management. Nevertheless, cur-
rent international guidelines for image-
based stratification, treatment
response prediction, and evaluation
are heterogeneous and ineffective.4

Histopathology analysis is considered
the criterion standard for PDAC diag-
nosis and characterization. Still, it re-
mains challenging even for
experienced pathologists owing to
marked morphologic tumor heteroge-
neity and the limited amount of tumor
tissue in biopsy.5–7 Moreover, histopa-
thology evaluation of treatment
response is imprecise, of limited clin-
ical relevance, and affected by inter-
observer variation.8

Artificial intelligence (AI) has
gained considerable interest in
oncology because it has the potential
to leverage high amounts of data to
produce individualized recommenda-
tions based on each patient’s clinical
picture.9 As the volume of multi-modal
data acquired in routine clinical prac-
tice increases, AI can support clinicians
and ultimately guide decision making
at each step of the patient pathway by
focusing on well validated applications
at meaningful clinical touch-points.9

Commercial clinical AI is already a re-
ality for diseases like breast and lung
cancer, with multiple FDA-approved
products on the market for screening,
diagnosis, and tumor characteriza-
tion.10 Currently, there are 2 main ap-
proaches for image-based AI:
radiomics and convolutional neural
networks (CNNs). Radiomics predicts
an outcome by feeding manually
defined texture and shape features
extracted from a region of interest to
machine-learning models. CNNs, on the
other hand, automatically compute the
relevant features directly from the
imaging during training, in a neural
network comprising a sequence of
convolutional and pooling operations.
Since the introduction of AlexNet in
2012, CNNs have evolved enormously
and are now dominating image anal-
ysis, but the transition from hand-
crafted radiomic features to deep
learning in the medical domain has
been gradual.11,12

The number of publications on AI
for clinical decision making in
oncology has increased exponentially
in the past few years.11 However, AI
research in PDAC is still at a pre-
liminary stage compared with other
cancer diseases, with limited private
and public data sets and a lack of in-
dependent external model validation.13

As a result, no AI applications have
been implemented in clinical practice
for PDAC.

The first step toward clinically
relevant AI is to define the research
questions to be addressed by AI algo-
rithms. This should be done based on
specific patient pathways, by identi-
fying the critical touch-points that are
lacking in clinical practice and where
AI could have the greatest impact. For
this commentary, an international,
multi-disciplinary, multi-institutional
expert panel including AI experts,
pancreatic radiologists, pathologists,
and surgeons came together to define
the PDAC patient clinical pathway and
derive its main touch-points for AI
development.14 The expert board
divided the patient pathway into 5
steps: detection, diagnosis, staging,
treatment, and monitoring, as depicted
in Figure 1. In each step, the most
relevant patient and clinician decision-
oriented touch-points for image-based
AI research were identified. These
touch-points regard clinical decisions
that are suboptimal with currently
implemented workflows and guide-
lines and are detailed in the subse-
quent sections.9
PDAC Patient Pathway
Detection

Timely detection is crucial to
improve PDAC patients’ outcomes,
because the 5-year survival increases
from only 3% in metastatic patients to
42% when the tumor is still confined
to the primary site.15 According to the
Japan Pancreatic Cancer Registry, pa-
tients in the earliest disease stage
show a survival rate as high as 80.4%
but account for only 0.8% of cases.16

Screening groups at risk for PDAC is
still cost-prohibitive owing to the
relatively low incidence and the
absence of validated noninvasive tu-
mor biomarkers. The most used mo-
dality for PDAC detection is multi-
phase contrast-enhanced CT (CECT).
However, early PDAC detection on
CECT remains challenging, because le-
sions are small (<2 cm), present
poorly defined margins, and are more
often iso-attenuating.4,17 Radiologists’
sensitivity at detecting lesions with
size smaller than 2 cm on CECT has
been reported to be as low as 58%.4,17

Contrast-enhanced MRI is highly
effective at detecting tumors that are
poorly visible on CECT, but it is not yet
routinely implemented in the clinic.18

Early detection, arguably the most
pressing issue in PDAC management,
can be facilitated by the timely identi-
fication of secondary imaging signs
predictive of PDAC, such as main
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Figure 1.PDAC patient pathway. The steps of the general cancer patient pathway are shown in the top part of the figure.
Below, the vertical boxes show the actions/guidelines for PDAC used in each step. The width of the streams represents the
proportion of patients that go through each branch of the PDAC patient pathway. aCTx, adjuvant/induction therapy; nCTx,
neoadjuvant chemo(radio)therapy; Px, palliative care; Rx, resection.
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pancreatic duct cutoff or dilation,
parenchymal atrophy, and irregular
pancreatic contour.4,19 These signs are
often visible on CECT scans 18 to 12
months before clinical diagnosis, but
the reported radiologists’ sensitivity
for their timely detection is only 44%,
limiting the chances of early action.19

Recent articles have shown great
potential for AI-driven PDAC diagnosis
in CT.13 Chen et al20 developed an
algorithm to distinguish between
pancreatic cancer and normal pancreas
on portal venous CT, which was trained
with a large data set of 2011 cases (546
pancreatic cancer). In a test set of 1473
CT studies (669 malignant) from in-
stitutions throughout Taiwan, AI ach-
ieved an area under the receiver
operating characteristic curve (AUC) of
0.95 (95% confidence interval [CI]
0.94–0.96), with 74.7% (68 of 91, 95%
CI 64.5–83.3) sensitivity for malig-
nancies smaller than 2 cm. In the in-
ternal test set, AI achieved an AUC of
0.96 (95% CI 0.94–0.99), without a
significant difference in sensitivity
compared with the original radiologists’
report. However, the data sets used for
training and testing the algorithms are
not consecutive but artificially curated,
with control cases being derived from
liver and renal donors. In practice, pa-
tients with suspicion of PDAC often
show one or several pancreatic alter-
ations, and to be clinically relevant AI
should be able to distinguish PDAC
from other less aggressive pancreatic
neoplasms. Training AI models with
such artificially curated cohorts could
cause performance overestimation.
2

Regarding early detection,
Mukherjee et al21 studied whether a
radiomics-based AI algorithm could
detect PDAC at the prediagnostic
stage (3–36 months before clinical
diagnosis). The study included 155
patients and an age-matched cohort
of 265 subjects with normal pancreas
for model development and an inde-
pendent internal set of 176 patients
and 80 publicly available control
cases for testing.21 The model
achieved a high AUC of 0.98 (95%
CI 0.94–0.98), significantly out-
performing 2 radiologists who inde-
pendently reviewed images in the
test set (mean AUC 0.66, 95% CI
0.46–0.86).21

Despite these promising early re-
sults, the identification of small le-
sions and secondary anatomic signs is
still widely disregarded in AI-based
detection research, and most studies
do not disaggregate performance
based on tumor size and stage.13 In
addition, there is a lack of research
on lesion localization and a general
absence of well curated data sets,
with positive and negative cases be-
ing retrieved from completely
different populations, which does not
reflect the clinical landscape and can
introduce bias.13 For AI to improve
PDAC detection, it is crucial to ac-
quire and make publicly available
well curated, multi-modal data sets
that contain a significant proportion
of small (<2 cm or even <1 cm) tu-
mors, which should be treated as a
subgroup of interest when reporting
model performance.
Diagnosis
PDAC symptoms are mostly non-

specific in early disease stages, and
because lesional appearances are het-
erogeneous on CECT, patients are often
initially misdiagnosed with other, more
common abdominal diseases with
similar symptomatology (eg, gallbladder
diseases, acute or chronic pancreatitis,
duodenum cancer).18,19 Initially mis-
diagnosed patients are reported to pre-
sent higher rates of abdominal pain,
weight loss, and acute pancreatitis than
correctly diagnosed patients and are at a
higher risk of advanced disease.18 His-
topathology assessment is the current
criterion standard for PDAC diagnosis
confirmation and is usually based on
EUS fine-needle cytology or biopsy.
Nevertheless, the morphologic distinc-
tion of PDAC from other lesions on small
biopsies or cytology samples can be
challenging, especially given theminimal
amount of lesional material that is often
contained in these samples.19

CT with or without contrast is the
main modality for PDAC detection.
Park et al22 developed a deep-learning
model to differentiate images with
pancreatic neoplasms (PDAC, neuro-
endocrine neoplasm, solid pseudopa-
pillary neoplasm, intraductal
pancreatic mucinous neoplasm, serous
cystic neoplasm, and mucinous cystic
neoplasm) from images without
pancreatic abnormalities. The authors
trained the model in a data set of 852
patients (503 pancreatic neoplasms)
and tested it in 2 neoplasm-enriched
consecutive data sets (one internal
and one external) of patient
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undergoing contrast CT scans.
Furthermore, 2 board-certified radiol-
ogists independently interpreted the
CT images of the test sets. In the in-
ternal test set AI achieved an AUC of
0.91 (95% CI 0.89–0.94), showing no
statistically significant difference from
the radiologists’ performance. Howev-
er, radiologists performed significantly
better than AI in the external test set
(AI: AUC 0.87, 95% CI 0.84–0.89;
radiologist 1: AUC 0.95, 95% CI
0.93–0.97; radiologist 2: AUC 0.96,
95% CI 0.94–0.97).

Current research separates detec-
tion, defined as the distinction between
PDAC patients and healthy control
subjects, from differential diagnosis,
defined as the distinction between
PDAC and other types of pancreatic
lesions.13 The previously described
studies indicate that AI trained with
large data sets can approach expert-
level performance.22,23 However, both
studies focus on binary classification
as opposed to differential diagnosis,
and the evidence for radiologists’ per-
formance is limited because no multi-
institutional reader studies have been
conducted. It is crucial to move toward
well curated data sets including a
panoply of relevant pancreatic alter-
ations that should be distinguishable
from PDAC. In the future, research
should strive toward a single use case
for radiology-based AI in PDAC diag-
nosis that includes both the detection
of a lesion and its correct classification
among a variety of pancreatic diseases.
The current priority is the curation of
large data sets with representative
percentages of each lesion type and the
integration of different imaging mo-
dalities that offer complementary in-
formation regarding lesion
characterization. Research in AI for
histopathologic PDAC diagnosis is
scarce.13 Although histopathology is
considered the criterion standard for
confirming PDAC diagnosis, it is a time-
consuming process that suffers from
non-uniform implementation in clinical
practice and inter-observer vari-
ability.13 Developing powerful AI
models for histopathologic PDAC
diagnosis is fundamental to advancing
AI research at all steps of the patient
pathway. Such models would optimize
clinical workflows and empower the
generation of reliable ground truth
that could be used to develop AI with
other (noninvasive) modalities in a
timely and cost-effective manner.

Staging
After histopathology diagnosis, the

most used method for PDAC staging is
the TNM classification by the American
Joint Committee on Cancer (AJCC). The
local tumor extent (T stage), the
dissemination to the regional lymph
nodes (N stage), and the metastatic
spread todistant sites (Mstage) are used
to stratify patients, determine their
prognosis, and indicate treatment and
monitoring strategy.24 Nevertheless, the
TNM classification’s predictiveness for
overall survival (OS) is not reliable.25 A
2018 multi-center study aiming to vali-
date the 8th-edition AJCC TNM in a
cohort of 1525 patients receiving pan-
creatoduodenectomy reported a
concordance index of 0.57 (95% CI
0.55–0.60) for OS prediction.26

AI for PDAC staging lacks a solid
reference standard.13 TNM staging and
histopathologic grade do not correlate
sufficiently with OS and suffer from
inter-reader variability.13 A recent
systematic literature review identified
13 publications on AI for PDAC staging,
of which only 1 considered OS as the
ground truth.13 A study by Chaddad
et al27 divided patients into short- and
long-term survivors with a set
threshold, achieving 0.72 AUC on an
internal testing set, but no external
evaluation was performed. In the
absence of an international consensus
that relates surrogate end points, AI
research using clinically obtained low-
and high-grade differentiation and
predictive TNM is not clinically rele-
vant. Future AI research should focus
on discovering new data-driven stag-
ing biomarkers that relate histopa-
thology and imaging to OS.

Treatment
The most common treatment op-

tions for PDAC are resection and che-
mo(radio)therapy, in particular with
the use of FOLFIRINOX and gemcita-
bine-abraxane.2 Surgical resection (Rx)
is the only option for potential long-
term survival, but as shown in
Figure 1 it is suitable for only a
minority (10%–15%) of patients
(stages I and II). Most patients are
diagnosed in later disease stages (III
and IV), where Rx is no longer possible
owing to metastasis or extensive vessel
involvement.28 Imaging assessment of
tumor-vascular contact primarily de-
termines eligibility for Rx, but there
are no widely accepted evidence-based
guidelines for appropriate tumor
resectability criteria.4,29 As a result, the
5-year survival rate of resected PDAC
patients is only 30% to 58%, with 69%
to 75% of patients relapsing within 2
years.1,30

As illustrated in Figure 1, most pa-
tients receive chemo(radio)therapy at
some point during treatment.31 Neo-
adjuvant chemo(radio)therapy (nCTx)
intends to optimize surgical outcome in
patients with resectable disease, and
adjuvant chemo(radio)therapy (aCTx) is
used to down-stage non-resectable pa-
tients. After aCTx, patients may become
resectable and undergo Rx or be
referred to palliative care (Px), which is
intended to suppress disease-related
pain and lengthen the patient’s life.
Although most patients experience
chemotherapy-induced toxicity, often
with limited efficacy due to biological
resistance, a priori prediction of
chemotherapy response is still not
possible in current clinical work-up.32,33

Treatment response prediction
with the use of AI is a challenging task.
Healy et al34 performed a retrospec-
tive, international, multi-center study
for prognostication in resectable cases
with the use of radiomics of pre-
operative CT scans combined with
clinical factors. The training cohort
included 352 patients from 5 Canadian
hospitals, and the model was tested on
an external set of 215 from 34 hospi-
tals in Ireland. The clinical-radiomic
model discrimination (c-index 0.545,
95% CI 0.543–0.546) was higher
than TNM (c-index 0.525, 95% CI
0.524–0.526), with P < .001. Despite
superiority to TNM, the low model
discrimination results in limited
clinical utility for potential treatment
decisions. Another study, by Yao
et al,35 used deep learning for pre-
operative survival prediction and
achieved a c-index of 0.667 with an in-
house development cohort of 296
cases, but no external validation was
3
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performed. These studies indicate that
pre-operative imaging might not contain
sufficient information to predict prog-
nosis and should be combined with
other data modalities such as clinical
variables, histopathology, genomics, and
other imaging modalities.

AI research for treatment response
prediction disproportionally focuses
on post-surgery patient outcome.13

Given that 80% to 85% of patients
are diagnosed with non-resectable
disease, AI research on prediction of
response to resection will have a minor
impact on improving overall PDAC
patients’ outcomes.36 Instead, research
efforts should focus on later disease
stages, predicting response to (neo-)
adjuvant and palliative CTx. Future AI
research should consider multiple
treatment options for a given patient,
providing the most favorable sugges-
tion based on survival as the outcome
measure.
Treatment Monitoring
Following curative resection, his-

topathology analysis of the resected
specimen is performed to confirm the
diagnosis of PDAC and to map the
extent of disease. This includes the
assessment of lymph node metastases,
tumor permeation along lymphatics
Figure 2.Schematic representation of the
intelligence applications from the definitio
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and blood vessels, and the clearance to
the resection margins (resection
margin status).37 Nevertheless, the
prognostic value of these parameters is
still controversial, with several studies
reporting no significant relationship to
survival.37–39 The main reason for the
low predictive power of histopathology
findings is the lack of standardized
evaluation, consensus definitions, and
reporting approaches.40,41

In patients undergoing CTx, imag-
ing is critical for determining thera-
peutic response and selection of the
next treatment approach, because
acquiring a biopsy could lead to in-
crease of inflammation.41 The
Response Evaluation Criteria in Solid
Tumors (RECIST) 1.1 (2009) is the
current standard for evaluating CTx.
This is a purely morphologic set of
criteria that quantitatively tracks tu-
mor burden changes based on alter-
ations to the lesions’ size. Although
RECIST shows some success in moni-
toring response based on metastases
assessment, it is ineffective when
considering the primary tumor,
because PDAC lesions present poorly
defined borders and significant het-
erogeneity in regression/progression
patterns.41 Furthermore, CTx often re-
sults in necrotic, fibrous, or inflamma-
tory changes, which translate into an
steps and technical requirements for the de
n of the research question to clinical integr
apparent enlargement of the lesion in
CT/MR scans that can be mis-
interpreted as tumor progression.41

Current histopathologic tumor
regression grade (TRG) systems for
PDAC are based on a semi-quantitative
evaluation of the destruction of cancer
cells, the amount of residual viable
cancer, or the extent of fibrosis
induced by treatment. However, cur-
rent TRG systems are based on
imprecise criteria that are difficult to
apply, and a standardized and widely
accepted grading system for the histo-
logic evaluation of TRG in pancreatic
cancer has not yet been estab-
lished.8,42,43 These factors make
RECIST and histopathology TRG insuf-
ficient for predicting local oncologic
response in PDAC patients.40,41

In a recent literature review,
we found 2 publications regarding
treatment evaluation and no publica-
tions for follow-up.13 The study by
Janssen et al44 takes a step in the di-
rection of more objective and repro-
ducible TRG systems for patients
undergoing nCTx by automatically
segmenting relevant structures on
whole-slide images of resection
specimens.

Nasief et al45 proposed an AI model
based on delta radiomics from daily
longitudinal scans to predict response
velopment of clinically relevant artificial-
ation.



Table 1.Summary of Methodologic Guidelines for Developing Clinically Relevant Artificial Intelligence (AI) for Pancreatic Ductal
Adenocarcinoma (PDAC) Care

Step Guidelines

Study population The study population should be clearly defined and representative of the target patient population, sufficiently
covering the relevant real-world heterogeneity and diversity. The study population ideally should contain
consecutive patients reflecting a variety of pancreatic neoplasms (cystic lesions, benign conditions as
pancreatitis, and malignant varieties, such as neuro-endocrine tumors) and PDAC. Demographic factors
such as age, sex, race, and ethnicity should be considered and clearly described.

Ground truth The ground truth for testing sets should be as strong as possible. Histopathology confirmation (from biopsy or
resected tissue) is the most reliable ground truth for detection and diagnostic tasks. For cases where
histopathology is unavailable, follow-up should be performed to confirm death by pancreatic cancer or that
cancer did not develop (negative cases). For treatment response, staging, and prognostication tasks, the
only reliable ground truth currently is survival. Intermediate metrics, such as TNM, RECIST, and resection
margin, should not be considered.

Sample size The sample size should be large enough to ensure statistical power and generalizability. The sample size
should be determined by appropriate statistical methods and consider the data set‘s variability and
complexity. For external predictive performance evaluation, as a rule of thumb, the sample should contain
at least 100 events per outcome.

Evaluation criteria Clinical success criteria must be determined and described, including an analysis of the potential risks of
prediction errors. Uncertainty estimation should be integrated into model development, and performance
should be reported with respect to model uncertainty. It is advised to perform a feasibility check at an early
stage to assess whether the expected benefit of AI outweighs development and maintenance costs.

Exploratory data analysis
(EDA) elements

EDA should be performed to identify data quality issues, missing values, outliers, and other anomalies. EDA
should also be used to identify potential confounding variables and assess their impact on the outcomes
of interest. Because AI is data driven, the distribution of vendors, modalities, settings, and average
longitudinal information acquired in a clinical setting should be considered.

Image quality Image quality should be enough for AI modeling, with minimal noise, distortion, and artefacts, while
representing real-world heterogeneity and diversity. An additional validity check could be performed by
randomly sampling a portion of the data and manually checking it for errors. The proportion of errors
should be reported. The AI that is developed should be generally applicable to imaging acquired in
hospitals around the world and therefore should be robust to variations in image quality.

Image selection criteria Images should be selected based on relevant clinical features and diagnostic criteria. The selection criteria
should be transparent, reproducible, and consistent with established clinical guidelines. Confounding
image factors, such as biliary stents, should be considered and reported for both disease and control
patient groups.

Data processing Duplicate data parameters should be identified and removed to ensure that the data set is not biased or over-
represented by certain features or samples. The Observational Medical Outcomes Partnership common
data model strategy, in which clinical parameters from different centers with various naming and
classification systems can be handled and translated to a common format, should be used. Highly
correlated features should be identified and combined through techniques such as hierarchic clustering.
Missing data imputation is generally recommended over complete case analysis where incomplete data
are excluded.

Anonymization regulations Data should be anonymized to protect patient privacy and comply with relevant regulations, such as HIPAA.
Anonymization should be performed with the use of appropriate methods that preserve the integrity and
utility of the data.

Long-term sustainability
of data sets

Data sets should be regularly updated and maintained to ensure their long-term sustainability and relevance.
This includes the incorporation of new data sources and the use of appropriate data management and
curation practices.
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to nCTx. That study included 90 pa-
tients divided into good and poor re-
sponders based on a modified Ryan
scheme for histopathology-based TRG,
and the model achieved an AUC of
0.98 in the independent test set (40
patients).
AI research for treatmentmonitoring
is lagging behind.13 Clinically relevant AI
applications should directly predict OS
and recurrence from large well curated
radiology and pathology data sets. In
addition, AI algorithms for treatment
monitoring should strive to assist
clinicians by indicating the best action at
a given time-point, such as timely
termination of treatment to prevent un-
necessary comorbidities, selecting re-
staging time-points, adjusting the treat-
ment regime, or choosing the optimal
schedule for long-termpatient follow-up.
5
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The Path for Clinically
Relevant AI in PDAC

Powered by the advent of deep
learning, developments in computing
technology, and massive growth in
available clinical data, AI holds the
potential to bring transformative
changes into health care. PDAC is
particularly suited to benefit from AI
research and the development of
commercial applications, because cur-
rent clinical practices still lead to poor
patient outcomes. However, it is
essential that research is performed to
high quality standards and focuses on
clinical validity, utility, and usability.9

In Figure 2, we propose the neces-
sary steps to develop clinically rele-
vant AI for PDAC management, leading
to commercial applications that can be
incorporated into clinical workflows
and advance patient care.

The first step is to define the clinical
question to be addressed by AI. This
should be done based on the PDAC pa-
tient pathway by identifying the critical
clinical touch-points lacking in clinical
practice and where AI could have the
most significant impact. For this com-
mentary, suchmoments and subsequent
opportunities for AI research were
identified in consensus by a consortium
of expert clinicians and AI researchers
from multiple international in-
stitutions.14 We propose that for radi-
ology and pathology AI to advance PDAC
care, future research should focus on
early diagnosis, data-driven tumor
characterization, survival-based patient
staging, and treatment response predic-
tion and monitoring.

Following the research question
definition, it is crucial to identify and
curate large multi-institutional data
sets for model development and vali-
dation. The data sets should be pre-
pared with the specific research
question in mind, particularly concern-
ing ground truth selection. The ground
truth definition is the most crucial step
for model development, because it de-
termines how a model is optimized and
its clinical applicability. Therefore, the
ground truth should always be defined
by actual patient outcomes, such as
overall or disease-free survival, as
opposed to intermediate clinical
6

variables, such as TNM staging,
histopathology-based tumor response
scores, margin status, and RECIST. In
addition, there is an urgent need for
more high-quality public data sets. The
only publicly available PDAC imaging
data sets are from Medical Segmenta-
tion Decathlon (MSD) and The Cancer
Genome Atlas (TCGA). TheMSD data set
contains CT imaging for patients with
pancreatic malignancies (neuro-endo-
crine tumors, pancreatitis, PDAC, cysts).
The limitation of the MSD data set is the
absence of a pathology-proven diag-
nosis for each case, because the data set
does not provide the distribution of
types of lesions. The TCGA data set
contains whole-slide images for pa-
tients with PDAC, and its major limita-
tion is the incomplete clinical
information regarding the type of
treatment and OS, which are known for
only a small subset. Large well curated
multi-institutional private and public
PDAC data sets are essential for AI
development and testing. These data
sets are necessary to compare different
AI solutions and translate the devel-
oped models into the clinic by vali-
dating the AI algorithms externally.

During the AI model development
step, internal data sets are used for
model training and optimization.
External data can also be integrated
at this step either by direct data
sharing with the developing center or
via federated learning, where the
training code is shared with the
external data center. Federated-
learning approaches have the advan-
tage of facilitating data privacy
assurance but come with the risk of
increased complexity in model devel-
opment and data standardization.

Once the model has been trained, it
is crucial to perform external validation
with data sets that have not been used
for the model development step. Then it
is possible to assess the model’s gener-
alizability to new cohorts and get an
accurate performance metric. The
external validation can be done by data
sharing or model sharing. The model-
sharing approach has the advantage of
ensuring data privacy and not requiring
any transfer agreement. The Grand
Challenge platform is an example of an
online service that allows the
developing center to upload AI algo-
rithms, which become accessible to the
external center to validate with their
data.

After a model is externally vali-
dated, it should be submitted for
approval by the appropriate certifica-
tion authority before it can be imple-
mented into clinical workflows. This is
a cyclical process, as clinical re-
quirements and user experience will
lead to necessary improvements to the
AI models, which should continually be
updated and re-certified to meet clin-
ical needs.

The methodologic guidelines for
developing clinically relevant AI for
PDAC care are summarized in Table 1.
We based these recommendations on
relevant guidance documents for clin-
ical AI-based prediction models, spec-
ifying each step to the particular use-
case of PDAC.46

In conclusion, the future of AI in
PDAC lies in addressing relevant clin-
ical questions, establishing multi-
institutional collaborations for the
curation of large-scale data sets, and
integrating multiple data modalities
into well designed study protocols.
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