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Abstract 
Motivation: Identification of genomic, molecular and clinical markers prognostic of patient survival is important for developing personalized 
disease prevention, diagnostic and treatment approaches. Modern omics technologies have made it possible to investigate the prognostic im-
pact of markers at multiple molecular levels, including genomics, epigenomics, transcriptomics, proteomics and metabolomics, and how these 
potential risk factors complement clinical characterization of patient outcomes for survival prognosis. However, the massive sizes of the omics 
datasets, along with their correlation structures, pose challenges for studying relationships between the molecular information and patients’ 
survival outcomes.
Results: We present a general workflow for survival analysis that is applicable to high-dimensional omics data as inputs when identifying 
survival-associated features and validating survival models. In particular, we focus on the commonly used Cox-type penalized regressions and 
hierarchical Bayesian models for feature selection in survival analysis, which are especially useful for high-dimensional data, but the framework 
is applicable more generally.
Availability and implementation: A step-by-step R tutorial using The Cancer Genome Atlas survival and omics data for the execution and eval-
uation of survival models has been made available at https://ocbe-uio.github.io/survomics.

1 Introduction
Personalized medicine improves patient diagnosis and treat-
ment by making use of patient-specific genomic and molecu-
lar markers that are indicative of disease development. Time 
to an event of interest (e.g. time to death or disease progres-
sion) is a widely used end point and patient outcome for 
many diseases, and therefore it has become popular to iden-
tify genomic, molecular and clinical markers for survival or 
progression prediction of patients suffering from complex 
diseases such as cancer. In this tutorial, we will only consider 
so-called right-censored survival data, where a patient has 
been followed for a certain time period and the event of inter-
est is either observed in this time period or might occur at a 
later (as yet unobserved) time point. Right-censored survival 
data include both a time and the status of each patient at that 
time as joint outcomes, where time is a continuous variable 
and status is a binary variable indicating whether the event of 
interest has been observed up to the given time or not; in the 
latter case, we refer to this observation as censored at the ob-
served time. See Table 1 for an example illustration, and 
more details of the survival data in Section 2. When using the 
status label as an outcome in an ordinary logistic regression, 

the regression coefficients will become increasingly uncertain 
and less reliable with increasing follow-up time (Green 
and Symons 1983). When using the observed time (or its 
transformation, e.g. logarithm of time) as an outcome in an 
ordinary linear regression, the presence of censored observa-
tions (i.e. patients still alive by the end of follow-up period) 
causes considerable difficulties for assessing the accuracy of 
predictions (Henderson 1995). For example, Table 1 shows 
an example where the proportion of patients surviving past 
10 years is 1=5 ¼ 20% based on the observed data, but the 
(unobserved) factual proportion surviving past 10 years 
is 3=5 ¼ 60%.

The availability of multiple types of genomic and molecu-
lar data poses great opportunities but also further challenges 
for building effective statistical models to identify biomarkers 
that are prognostic of patient survival. For example, omics 
profiles, such as those from mRNA expression, DNA copy 
number, single-point and other genetic mutations, may be 
available from the same patient, and these high-dimensional 
data come with intra- and inter-dataset correlations, hetero-
geneous measurement scales, missing values, technical vari-
ability, and other background noise (Hasin et al. 2017). 
Rahnenf€uhrer et al. (2023) provided a general guideline for 
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high-dimensional omics and electronic health records data 
analysis, and discussed statistical challenges and opportuni-
ties for survival modeling. Bøvelstad et al. (2007) and 
Bøvelstad et al. (2009) compared various machine learning 
methods and showed improved survival prediction perfor-
mance by coefficient shrinkage methods that combine several 
data sources, in their case clinical and gene expression data. 
Another recent study by Bommert et al. (2022) performed a 
benchmark of filter methods for feature selection in high- 
dimensional gene expression data for survival prediction, and 
recommended using the simple variance filter before fitting a 
‘2-regularized Cox regression model (Simon et al. 2011) for 
accurate survival prediction and stable feature selection. 
Vinga (2021) reviewed structured penalized regressions for 
analyzing high-dimensional omics data for survival predic-
tion or evaluation. Multiple studies have shown that it is pos-
sible to further improve the prediction accuracy and feature 
selection by considering more complex structures, such as bi-
ological pathways, or by identifying significant features 
among functional relationships between the omics features 
(Chekouo et al. 2015, Kundu et al. 2018, Wang and Liu 
2020, Madjar et al. 2021).

In this tutorial, we describe a general workflow for survival 
analysis with omics data, as well as review the commonly 
used statistical methods for feature selection and survival 
prediction; importantly, we provide a step-by-step R tutorial 
using publicly available omics data from The Cancer Genome 
Atlas (TCGA) project (http://cancergenome.nih.gov). In this 
example dataset, the overall survival time, demographic and 
gene expression data from primary invasive breast cancer 
patients in TCGA (TCGA-BRCA) were retrieved from the 
Genomic Data Commons Data Portal data release 32.0–36.0. 
Compared to the previous reviews and benchmarks of sur-
vival models in bioinformatic applications, this tutorial pro-
vides a complete workflow ranging from data preparation to 
final calibrated models, with a particular focus on building 
survival models using high-dimensional omics data, and as 
such covers both the commonly used penalized regressions 
and Bayesian models for survival analysis with high- 
dimensional and generally noisy datasets. For this tutorial, 
we assume that readers have the knowledge of basic statisti-
cal methods. Terms beyond basic statistics are explained in 
corresponding text.

2 Data categories
We use omics data and overall survival outcomes from cancer 
patients as an example in this tutorial, but the methods are 

applicable also to other diseases with similar data types in 
personalized medicine applications. The ultimate goal of per-
sonalized medicine is to identify patient-specific risk factors 
to guide disease prevention, diagnostic and treatment strate-
gies. The identification of potential risk factors for cancer 
patients often considers clinical, demographic, genomic and 
molecular information, and their associations with the 
patients’ time-to-event data (i.e. survival).

2.1 Time-to-event data
Time-to-event or survival data contain the event of interest 
(e.g. death is the event assumed in this section), together with 
the time from the beginning of a study period either to the oc-
currence of the event, end of the study, or patient loss to 
follow-up (i.e. right censoring; discussions of right, left and 
interval censoring can be found in Leung et al. 1997).  
Figure 1c shows the survival or right-censored times since 
cancer diagnosis of patients. The exact survival time of a pa-
tient may be not observed due to censoring. Therefore, a pa-
tient has two outcome indices: censoring indicator d (also 
called status) and observed time ~T ¼ minfT;Cg, where T is 
the exact survival time and C is the censoring time. Indicator 
d can also be denoted as d ¼ 1fT � Cg, where 1f�g is an indi-
cator function. To characterize the survival time of a patient, 
we can use survival function SðtÞ ¼ PfT > tg; which gives 
the probability of the patient’s survival beyond time t. 
Another useful quantity is the hazard function 

hðtÞ ¼ limDt!0
Pft � T < tþ DtjT � tg

Dt
;

which is the instantaneous probability of the patient’s death 
at time t conditional on the patient having survived up to that 
time point.

2.2 Clinical and demographic data
There are multiple sources of patient-level information that 
can be explored to identify risk factors for cancer patients. 
One can start with routinely collected and commonly used 
patient data, such as clinical and demographic variables. For 
example, an older male patient with a low body mass index 
(BMI) has a relatively high risk of gastric cancer (Nam et al. 
2022). Table 2 illustrates selected clinical and demographic 
variables often available for cancer patients. Clinical and de-
mographic variables are considered important sources of in-
formation for predicting survival and are often used to build 
reference models for omics-based prognostic models 
(Herrmann et al. 2021).

2.3 Omics data
Thanks to the rapid development of modern molecular bio-
technology, large amounts of human genomic and molecular 
data have become available from many patient profiling proj-
ects. These projects often collect multiple levels of molecular 
information such as genomics data for DNA variation, tran-
scriptomics data for mRNA expression, proteomics data for 
protein abundance and metabolomics data for metabolite 
processes, as illustrated in Fig. 1a. Among the multiple omics 
levels, metabolomics is the closest to observable phenotypes, 
such as tumor growth and proliferation (Cairns et al. 2011). 
To deeply understand the molecular biology of tumor devel-
opment, multiple levels of omics data may deliver novel 
insights into the circuits of molecular interactions that 

Table 1. An example of right-censored time-to-event (survival) outcomes, 
illustrated in an example where the outcome of interest is the time from 
disease diagnosis to death.a

Patient 
ID

Observed  
time  
(years)

Status at  
observed  
time

Factual time  
to death, possibly  
unobserved 
(years)

1001 11 Censored 20
1002 4 Dead 4
1003 5 Censored 12
1004 9 Dead 9
1005 1 Censored 11

a If a patient was alive at the last observed time point, the measurement 
is censored at that time point.
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underlie the disease initiation and progression (Tarazona 
et al. 2021).

DNA-level omics data often include single nucleotide poly-
morphisms (SNP), DNA methylation, and somatic copy num-
ber variation, see illustration of these data types in Table 3. 
Each SNP feature can be coded as f0; 1;2g, according to the 
number of minor alleles at the given locus in each individual, 
i.e. AA, AG, GC, or TT. DNA methylation reveals methyl 
groups added to the DNA molecule, which can be quantified 
as a b-value b ¼ M

MþUþa 2 ½0;1�, where M and U are the fluo-
rescence intensities of the methylated and unmethylated 
DNA at a CpG locus, and the offset a is often set to 100 to 
stabilize the b-value when M and U are small. Somatic copy 
number variation measures the number of repeated sections 
of the tumor genome. Table 3 shows the assumed distribu-
tions for the downstream statistical modeling. For example, 
DNA methylation b-value is a proportion, often either close 
to 1 or 0, which can be characterized by a mixture of two 
beta distributions.

RNA-level omics data usually include messenger RNA 
(mRNA) expression and microRNA (miRNA) expression. 
Traditionally, DNA microarrays were used to measure the 
expression levels of DNA sequences called probes, which 
acted as a proxy for the amount of reads representing a geno-
mic feature of interest. The reads of microarray expression 
level can be characterized by a negative binomial distribution 
directly, or a Gaussian distribution after log2 transformation 
(see Table 3). Nowadays, RNA sequencing (RNA-seq) has 
replaced DNA microarrays, since it allows for the sequencing 

of the whole transcriptome, while DNA microarrays only 
profile predefined transcripts or gene probes. miRNAs are 
small noncoding regulatory RNAs that play an important 
role in regulating gene expression and are highly evolutionary 
conserved in mammals (Bartel 2018).

Protein-level omics data usually originates from mass spec-
trometry (MS)-based proteomics profiling of a particular cell, 
tissue, organ, which can detect and measure abundance levels 
of entire or phosphorylated proteins. In contrast to global 
proteomics with MS, TCGA consortium has produced more 
targeted proteomics profiles, involving a set of 180–250 pro-
tein features using reverse-phase protein arrays (RPPA) 
(Akbani et al. 2014). In contrast, The Clinical Proteomic 
Tumor Analysis Consortium (CPTAC) profiling has pro-
duced >10 000 protein features using MS technology 
(Edwards et al. 2015). Protein expression data can often be 
considered approximately Gaussian distributed after log2 
transformation, depending on the data-generating platform. 
In global proteomics, there are often sample-specific missing 
values due to detection limits of protein quantification.

Metabolite-level omics data has similar statistical proper-
ties to proteomics data, and metabolomics profiling is usually 
done with MS-based technologies, enabling the detection, 
and quantification of many thousands of metabolic features 
simultaneously. Nuclear magnetic resonance (NMR) spec-
troscopy is the other main analytical technology to profile 
metabolic processes. An important limitation of NMR spec-
troscopy is its relatively low sensitivity, which may lead to 
relatively few detected metabolites. Metabolic concentrations 
often follow logarithmic Gaussian distribution. Similar to 
large-scale proteomics, missing values due to detection limits 
should be treated differently than missing values due to mea-
surement artefacts, which are more frequent in metabolite- 
level omics data (Sun and Xia 2023).

Single-cell sequencing is becoming increasingly more preva-
lent in many profiling studies. The modern single-cell omics 
technologies can produce multiple levels of omics data de-
rived from the same samples, such as transcriptomics and 
chromatin accessibility. The single-cell data types are similar 

Figure 1. Pan-cancer survival data and omics signatures. (a) Multiple omics layers [modified from Haukaas et al. (2017) and Jendoubi (2021)]. The 
network illustrates intra- and cross-layered biological features or molecules (e.g. DNA methylation, mRNA, proteins, metabolites). (b) Different origins of 
tumors represented by the TCGA pan-cancer patient cohorts. (c) Overall survival times of cancer patients from TCGA. Novel methods are needed to 
model the high-dimensional multi-omics data and leverage information from heterogeneous cancer cohorts for improved survival prognosis and 
biomarker identification.

Table 2. Examples of clinical and demographic variables.

Variable Data type

Sex Binary
Body mass index (BMI, kg=m2) Continuous
Ethnicity Nominal
Age at first diagnosis in years Integer
Pathological stage Ordinal
Therapy type (e.g. chemo-, hormone, immuno-therapy) Nominal
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to the illustration in Table 3, but each measurement origi-
nates from the level of individual cells. This article focuses 
mainly on survival analysis with single bulk omics data.

2.4 Missing data
Missing values are often observed in many types of high- 
dimensional omics data due to various experimental reasons 
(Aittokallio 2009, Kong et al. 2022). For example, mRNA 
transcriptomics data from microarrays have 1%–10% miss-
ing values affecting up to 95% of genes due to corruption of 
image, scratches on the slides, poor hybridization, inadequate 
resolution, fabrication errors (de Brevern et al. 2004, 
Tuikkala et al. 2005); MS-based metabolomics data have 
10%–20% missing values affecting up to 80% of variables 
due to lack of peak identification by chromatogram, limita-
tion of computational detection, measurement error, and 
deconvolution errors (Hrydziuszko and Viant 2012, Sun and 
Xia 2023). The aforementioned technical reasons can lead to 
missing data that is either missing at random (MAR) or miss-
ing not at random (MNAR). When dealing with MNAR 
data, traditional imputation methods like multiple imputa-
tion may introduce bias. It is thus recommended to remove 
omics features which have large proportion (e.g. 50%) 
missingness over patients, and then apply imputation meth-
ods (e.g. k-nearest neighbor imputation) for the rest of the 
features with missing values before doing any statistical 
analysis or modeling. Alternatively, imputation-free methods 
(e.g. mixture models) that can deal with missing values can 
be applied directly (Taylor et al. 2022). Single-cell RNA-seq 
(scRNA-seq) data has a vast number of zeros, so-called gene 
dropout events, leading highly scarce data matrices. Jiang 
et al. (2022) discussed the sources of biological and nonbio-
logical zeros in scRNA-seq data and the existing approaches 
for handling them.

3 Survival analysis with low-dimensional 
input data
Let us assume we have data D ¼ fð~Ti; di;XiÞ : i ¼ 1; . . . ; ng
for n patients, where ~Ti is the observed survival time, di the 
censoring indicator and Xi contains p covariates including 
clinical, demographic and omics features. To estimate a sur-
vival function SðtÞ given the data D, one needs to keep track 
both of the number of patients at risk and those who left the 
study at any time point (here we only consider the case of 
right censoring and assume no delayed entry). At time t 
there are YðtÞ ¼

Pn
i¼1 YiðtÞ patients at risk, where YiðtÞ ¼

1f~Ti � tg is the indicator that patient i is at risk. The non-
parametric Kaplan–Meier (KM) estimator (Kaplan and Meier 
1958) uses the multiplication rule for conditional probabili-
ties to obtain an estimation of the survival function ŜðtÞ ¼
QK

k ¼ 1
Tk � t

1− dk
YðTkÞ

n o
; where all events happen (e.g. patients 

die) at K distinct times, T1 < T2 < � � � < TK ðK � nÞ and 
there are dk � 1 events happened at the time Tk. If no two 
events happen at the same time point, dk ¼ 1 and 
k ¼ 1; . . . ; n. The KM estimator gives an estimate of the mar-
ginal survival function, i.e. when you disregard the informa-
tion from the covariates.

Figure 2a shows the KM curve for TCGA-BRCA primary 
breast cancer patients data. Some basic statistics can be 
revealed from the survival curve. For example, the estimated 
median survival time, i.e. the time when the survival proba-
bility is 50%, of all the breast cancer patients is 10.8 years 
(dashed line in Fig. 2a), and 1-, 5-, and 10-year survival prob-
abilities are 0.988, 0.853, and 0.658, respectively. A log-rank 
test (Peto and Peto 1972) can be used to test whether two 
groups of patients [e.g. with treatment (pharmaceutical/radia-
tion therapy) or nontreatment] have the same (null hypothe-
sis) or different survival functions (alternative hypothesis), 
and provide a corresponding P-value (see Fig. 2b). The log- 
rank test can also be used to compare the survival probabili-
ties of any subgroups of patients based on other categori-
cal variables.

In the case where multiple clinical, demographic or omics 
features are available, one can explore each variable’s associ-
ation with survival outcomes separately. For a categorical 
variable, KM curves and log-rank tests can be used to investi-
gate whether there is a difference between multiple survival 
curves categorized by the variable. For a continuous variable 
X, the semi-parametric Cox proportional hazards model 
(Cox model, Cox 1972) is often used: 

hðtjXÞ ¼ h0ðtÞ exp fXbg; (1) 

where h0ðtÞ is the baseline hazard function and is left unspeci-
fied. As the name ‘proportional hazards’ implies, the Cox- 
model estimated hazard functions of two individuals (with 
different values of the covariate X) are indeed proportional, 
because h0ðtÞ does not depend on X and is thus assumed to 
be the same for all individuals. The functional form (1) 
describes the log-linear relationship between variable X and 
the hazard hðtjXÞ at any given timepoint t. It may be difficult 

Table 3. Illustration of omics data and distribution assumptions for data generated by commonly used high-throughput technologies.

Patient ID SNP Methylation  
(b-value)

Copy number  
variation  
(number of copies)

Gene expression 
(reads)

miRNA  
(reads)

Protein  
(intensity/ 
concentration)

Metabolite  
(intensity/ 
concentration)

1001 1 0.2 0 5 5 0.07 0.07
1002 0 0.11 5 2 2 0.1 0.1
1003 1 0.95 10 0 0 9.6 9.6
1004 2 0.5 4 30 30 2.8 2.8
..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

.

Technology SNP array Infinium  
BeadChip

SNP array (Gistic2) RNA-Seq RNA-Seq Mass  
spectrometry

Mass  
spectrometry

Distribution  
assumptions

Ordinal Beta mixture Negative  
binomial

Negative  
binomial

Negative  
binomial

log-Gaussian log-Gaussian

log2 ratio:  
Gaussian

log2 scale:  
Gaussian

log2 scale:  
Gaussian

log2 scale:  
Gaussian

log2 scale:  
Gaussian
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to satisfy the log-linear relationship based on the original 
scale of some omics features, e.g. gene expression data from a 
DNA microarray study; in those cases, the use of log 2-trans-
formation of the data (Table 3) can be helpful. The Cox 
model can also be used to investigate the risk of a categorical 
variable, provided the above assumptions are satisfied, which 
provides an effect estimate (hazard ratio, HR), in addition to 
the associated P-value.

It is often of interest to gain insights into the multiple fac-
tors and their cooperation for the survival outcomes. 
Multivariable statistical analysis plays an important role in 
such multi-modal survival modeling. The univariate Cox 
model (1) can be straightforwardly generalized by including 
multiple clinical, demographic or omics variables of interest, 
as long as the total number of covariates is much smaller 
than the number of samples; this often requires the use of var-
iable or feature selection methods. Heinze et al. (2018) pro-
vides pragmatic recommendations for practitioners of 
multivariable analysis with variable selection methods in 
low-dimensional modeling problems.

4 Survival analysis with high-dimensional 
input data
Since some omics data contain high-number of variables (e.g. 
RNA-seq with ca. 60 000 transcriptomic features and DNA 
methylation with ca. 450 000 features), there is a need to re-
duce the computational and modeling burden in multivari-
able analyses. One heuristics approach to pre-select a subset 
of features is to include only omics features at a specific sta-
tistical significance level when fitting a univariate Cox model 
(1); the pre-specified significance level would usually be 
higher than the commonly used 0.05 threshold, e.g. 0.1 or 
0.2, to avoid losing important features. However, this univar-
iate approach focuses on features that are independently as-
sociated with the outcome and might miss variables that are 
important in combination with other features (Okser 
et al. 2013).

Another simple approach is to pre-select omics features by 
variance, since larger variability across patients usually 
implies higher biological information, or at least predictive 
signal. One can for example pre-select omics features explain-
ing 50% of the total cumulative variance (Zhao and 
Zucknick 2020). Such unsupervised feature pre-selection is a 
recommended method to reduce dimensionality when dealing 
with hundreds or thousands of omics features, with the aim 
to improve the stability of final feature selection. For exam-
ple, Bommert et al. (2022) showed that the simple variance 
filter was the best method among all considered filter meth-
ods in terms of the predictive accuracy, run time and the fea-
ture selection stability in their benchmark study. Zhao et al. 
(2024) showed that the stability of final feature subset criti-
cally depends on the pre-selected feature set when using a 
standard Bayesian stochastic search variable selection method 
(see Section 4.3), and their proposed method that used 
known biological relationships between omics features lead 
to a more stable feature selection and slightly improved out-
come prediction.

When drawing conclusions on survival differences solely 
from the univariate Cox model (1), it is important to adjust 
the P-values of risk features for multiple comparisons to con-
trol false positives globally, e.g. by controlling the family- 
wise error rate (FWER) or false discovery rate (FDR). The 
problem of multiple testing is beyond the scope of this tuto-
rial, but the interested readers are referred to a recent review 
article (Korthauer et al. 2019). We note also that univariate 
analysis does not consider any relationships between multiple 
omics features, e.g. potential confounders for survival out-
comes (Clark et al. 2003). To avoid making seriously mis-
leading conclusions in such cases, it is necessary to perform 
multivariable survival analysis (Bradburn et al. 2003).

Omics data can have hundreds of thousands of variables 
measured at various molecular levels, which greatly chal-
lenges the classical multivariable regression models for time- 
to-event endpoints, since the number of variables is often 
much larger than the number of patients (i.e. p� n). To 

Figure 2. Kaplan–Meier curves of TCGA-BRCA data. (a) KM curve of all the TCGA-BRCA patients’ survival data. (b) KM curves of the TCGA-BRCA 
patients’ survival data grouped by treatment (i.e. pharmaceutical/radiation therapy) or nontreatment. The log-rank test is used to compare the two survival 
distributions corresponding to the two groups of patients.

Survive with omics                                                                                                                                                                                                                       5 

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/40/3/btae132/7623091 by guest on 15 April 2024



proceed with survival analysis, one option is to reduce the di-
mensionality of the omics features via unsupervised learning, 
and then investigate the association of the learned low- 
dimensional variables with survival outcomes (see next sec-
tion). An alternative approach is to directly use supervised 
learning methods, such as penalized regressions or sparse 
Bayesian models (Table 4), which enable the modeling of 
high-dimensional omics features, and the selection of key im-
portant features associated with the survival outcomes.

4.1 Unsupervised learning
Unsupervised learning methods aim to identify hidden pat-
terns or data groupings, and are for example useful when a 
phenotype (e.g. a cancer type) is to be divided into several 
subtypes (e.g. to explain heterogeneity among patients). For 
example, breast cancer has been traditionally categorized 
into five conceptual molecular classes, originally using pair-
wise average-linkage cluster analysis of DNA microarray 
data, to better understand tumor biology and guide clinical 
decision making (Perou et al. 2000). Unsupervised methods 
learn underlying patterns from unlabeled data by transform-
ing high-dimensional omics features into a lower dimensional 
space. Principal component analysis (PCA) is a classical mul-
tivariate technique that represents high-dimensional features 
in a low-dimensional space by building orthogonal (uncorre-
lated) linear combinations of the features that best capture 
the variance in the high-dimensional data.

Different from the distance-based PCA with linear trans-
formation, nonlinear techniques have recently emerged, such 
as t-stochastic neighbor embedding (t-SNE). t-SNE uses pair-
wise similarities of individuals based on Kullback–Leibler di-
vergence to project similarities into a lower dimensional 
space, ensuring that individuals with similar omics features 
are close in the generated embedding (van der Maaten 
and Hinton 2008). The focus of t-SNE is on preserving local 
distances between neighboring data points. Another nonlin-
ear alternative to PCA is UMAP (Uniform Manifold 
Approximation and Projection), which is a general dimension 

reduction method built upon Riemannian geometry (McInnes 
et al. 2018). Compared to other nonlinear methods of dimen-
sion reduction such as t-SNE, UMAP can sometimes provide 
better visualization quality in a shorter amount of time, while 
preserving the global structure of the omics data better.

Unsupervised methods only make use of the input data ma-
trix X and are agnostic to the survival information. To find 
out whether a given omics profile (i.e. the full set of omics 
features, not individual features) is associated with survival 
outcomes, a straightforward approach is to use a few repre-
sentative components from PCA, t-SNE, or UMAP as covari-
ates in a multivariable Cox model. An alternative is to use 
semi-supervised methods (Bair and Tibshirani 2004) that 
combine the clustering procedure and survival modeling to-
gether. However, such principal component regression and 
semi-supervised methods lose interpretability of the individ-
ual omics features, since each component is a linear or non-
linear combination of all omics features.

4.2 Supervised learning via penalized regressions
For the purpose of personalized cancer medicine, one is typi-
cally interested in identifying risk factor combinations from 
clinical and omics features. These factors can be targeted (di-
rectly or indirectly) via therapeutic strategies or used for diag-
nostics. Therefore, the objective is to identify a parsimonious 
set of features linked to survival outcomes by utilizing the 
wealth of information present in, e.g. the vast amount of 
available omics data. Penalized Lasso Cox regression 
(Tibshirani 1997) can be used to select a few relevant omics 
features by estimating their coefficients as nonzero (the non-
relevant features’ coefficients are shrunk to zero) via maxi-
mizing the penalized partial log-likelihood function of the 
regression coefficients with ‘1-norm penalty 

2=n � ‘ðbjDÞ−kjjbjj1 (2) 

Here, 2=n is a scaling factor for convenience, D ¼
fð~Ti; di;XiÞ : i ¼ 1; . . . ;ng, Xi includes p (omics) features of 

Table 4. Cox-type supervised learning methods.

Method Feature selection via Grouping 
effects

Uncertainty 
quantification

Comment

Penalized regressions: Penalty
Lasso Cox (Tibshirani 1997) ‘1-norm ✗ ✗

Adaptive Lasso Cox (Zhang and 
Lu 2007)

Weighted ‘1-norm ✗ ✗ Less false positives than Lasso

Elastic Net Cox (Simon 
et al. 2011)

‘1=‘2-norm ✓ ✗

Group-Lasso Cox (Kim 
et al. 2012)

‘2-norm ✓ ✗ Independent groups of fea-
tures selected

Sparse Group-Lasso Cox (Simon 
et al. 2013)

‘1=‘2-norm ✓ ✗

SCAD Cox (Fan and Li 2002) Quadratic spline and symmet-
ric penalty

✓ ✗ Selection of relatively large effects

SIS Cox (Fan et al. 2010) Top-ranked variables and 
any penalty

✓ ✗ Suited to ultra-high dimensions

Bayesian models: Shrinkage prior
Lee et al. (2011) Lasso (Laplace) prior ✗ ✓ Selection of posterior mean with 

a cutoff
Lee et al. (2015) Elastic Net, group/fused 

Lasso priors
✓ ✓ Selection of posterior mean with 

a cutoff
Konrath et al. (2013) Spike-and-slab prior ✗ ✓

Madjar et al. (2021) Spike-and-slab and MRF priors ✓ ✓

Mu et al. (2021) Horseshoe prior ✗ ✓ Selection of posterior mean with 
a cutoff
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the ith patient, k � 0 is a tuning parameter to control the 
overall penalty strength of the coefficients, jjbjj1 ¼

Pp
j¼1 jbjj, 

and the partial log-likelihood is ‘ðbjDÞ ¼

log
Qn

i¼1
expðXibÞP

l2Rk
exp ðXlbÞ

� �di

; where Rk ¼ fl : YlðTkÞ ¼ 1g is 

the risk set at time Tk. The Elastic Net Cox model (Simon 
et al. 2011) considers both the Lasso feature selection and the 
grouping effect of correlated omics features in ridge 
regression via a combination of the ‘1- and ‘2-norm (i.e. 
‘1=‘2-norm) penalty kfajjbjj1 þ

1
2 ð1−aÞjjbjj

2
2g (where 

jjbjj
2
2 ¼

Pp
j¼1 jbjj

2), which can usually improve the prediction 
performance over the Lasso Cox model. Figure 3 shows an 
example of Elastic Net Cox model feature selection from 
gene expression features associated with breast cancer 
patients’ survival. Note that often we wish to include a small 
set of well-established clinical risk factors in a survival model. 
Since they are established as important covariates, they can 
be included in the Lasso or Elastic Net Cox model as manda-
tory covariates without penalization. Then the penalized par-
tial log-likelihood function becomes 

2
n

log
Yn

i¼1

expðX0ib0 þXibÞ
P

l2Rk
exp ðX0lb0 þXlbÞ

( )di

−penðbÞ; (3) 

where b0 are coefficients corresponding to the ith individual’s 
mandatory covariates X0i, pen(b) is a ‘1- or ‘1=‘2-norm pen-
alty for feature selection of omics features Xi. De Bin et al. 
(2014) investigated more strategies to combine a low- 
dimensional set of well-established clinical factors and high- 
dimensional omics features into a global prediction model.

There are many alternative penalties that will achieve fea-
ture selection which have been applied to Cox proportional 
hazards regression for survival outcomes, such as the 
Adaptive Lasso Cox model that incorporates different penal-
ties for different coefficients to retain important variables 
(Zhang and Lu 2007), Group-Lasso that performs group se-
lection on (predefined) groups of variables (Kim et al. 2012), 

Sparse Group-Lasso that introduces sparse effects both on a 
group and within group level (Simon et al. 2013), the smoothly 
clipped absolute deviation (SCAD) Cox model that overcomes 
substantially biased estimates for large coefficients in ultra- 
sparse models (Fan and Li 2002), sure independence screening 
(SIS) procedure in combination with Cox model that speeds-up 
the feature selection dramatically and can also improve the ac-
curacy of estimation when dimensionality becomes ultra-high, 
i.e. logðpÞ ¼ OðnnÞ for some n > 0 (Fan et al. 2010). However, 
all these penalized Cox models do not directly provide uncer-
tainty of feature selection or survival prediction. One empirical 
way for uncertainty quantification is through additional 
resampling-based methods, see Section 5 for more details.

4.3 Supervised learning via Bayesian priors
Bayesian inference is an appealing approach for survival 
analysis due to its ability to provide straightforward uncer-
tainty quantification (e.g. credible intervals) of parameters 
and survival probabilities. For instance, Lee et al. (2011) pro-
posed a Bayesian version of the Lasso Cox (Bayesian Lasso 
Cox) model that provides credible intervals of coefficients 
fairly straightforward (see Fig. 4), but it is not easy to derive 
confidence intervals of coefficients in a Lasso-type model.

The fundamental theorem of Bayesian methods is Bayes’ 
rule. Let b be the parameters of interest, e.g. gene effects, ex-
ternal to the data D. To estimate the parameters b given the 
data information, one can use Bayes’ rule to obtain the condi-
tional (posterior) distribution of b: 

f ðbjDÞ ¼
f ðDjbÞf ðbÞ

f ðDÞ
/ f ðDjbÞf ðbÞ;

where f ðDÞ is a normalization constant that can be neglected 
in inference since the data are already observed, f ðDjbÞ is the 
likelihood of the data viewed as a function of the parameters 
of a statistical model and f ðbÞ is the prior distribution of b. 
The prior distribution can be chosen either based on histori-
cal data from past similar studies or from popular (non)infor-
mative priors (Ibrahim et al. 2001). The estimation of b is to 
maximize the posterior f ðbjDÞ or log f ðbjDÞ, which is equiva-
lent to maximize the sum of the log-likelihood and the log 
prior, i.e. log f ðbjDÞ ¼ log f ðDjbÞ þ log f ðbÞ, which takes into 
account both the observed data information and the prior in-
formation in an optimal way.

The Bayesian version of the Lasso Cox model can have a 
log posterior similar to the frequentist penalized partial 
log-likelihood function (2), if we assign independent double 
exponential (also known as Laplace, Fig. 5a) prior, f ðbÞ ¼Qp

j¼1
k
2 exp f−kjbjjg with a scale parameter k > 0, for all the 

coefficients, i.e. 

log f ðbjD; kÞ ¼ ‘�ðbjDÞ−kjjbjj1 þ C; (4) 

where ‘�ðbjDÞ is the full log-likelihood function i.e. 
logð

Ð t
0 h0ðsÞdsÞ þ ‘ðbjDÞ, C is a normalization constant inde-

pendent of b and the ‘1-norm penalty tends to choose only a 
few nonzero coefficients. Markov chain Monte Carlo 
(MCMC) sampling can be performed for posterior inference 
of b. Note that instead of using the partial log-likelihood 
‘ðbjDÞ in (4), a full log-likelihood function is used, which 
includes the baseline hazard function. This can be achieved, 
e.g. by assigning a stochastic process prior, e.g. a gamma pro-
cess, for the cumulative baseline hazard function. More 

Figure 3. Coefficient trace plot of an Elastic Net Cox model for overall 
survival prognosis of breast cancer patients from TCGA based on 
transcriptomic data and mandatory demographic variables age and 
ethnicity. The y-axis shows the magnitude of each feature’s coefficient 
given the strength of penalization displayed on the x-axis (from left to 
right the penalization decreases). The vertical line indicates the optimal 
k ¼ 0:032 (maximizes the partial likelihood via cross-validation) and its 
corresponding selected feature names are listed on the right side. Note 
that the demographic variables age and ethnicity were not penalized, so 
that their coefficient paths did not start from zero in the figure.
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details about the prior setup and inference can be found in 
Lee et al. (2011). Lee et al. (2015) extended the Laplace 
prior to Elastic Net prior, fused Lasso prior and group 
Lasso prior, which are often more suitable for correlated 
omics features in survival analysis. But Lee et al. (2011, 
2015) assign the same shrinkage priors to all covariates in-
discriminately, see Zucknick et al. (2015) for an extended 
Bayesian Lasso Cox model which permits the use of manda-
tory covariates.

Note that the Bayesian version of the Lasso with Laplace- 
type priors in practice do not result in automatic feature se-
lection, because only the posterior modes of the coefficients 
are equivalent to the frequentist Lasso solution, while in 
Bayesian inference one usually focuses on the posterior means 
as point estimates. As an alternative, a particular omics fea-
ture can be excluded if the estimated credible interval of the 
corresponding coefficient covers zero.

Stochastic search variable selection (SSVS) is an alternative 
approach to identify important covariates (George and 
McCulloch 1993, Konrath et al. 2013). SSVS uses indepen-
dent spike-and-slab priors for regression coefficients, e.g. 

bjjcj; s
2
j � cjNð0; s2

j Þ þ ð1−cjÞd0ðbjÞ; (5) 

where cj (j ¼ 1; � � � ; p) is a latent variable (which can have a 

Bernoulli prior with a fixed probability p) for feature selec-
tion indicating bj 6¼ 0 if cj ¼ 1 and bj ¼ 0 if cj ¼ 0, s2

j is an 
additional shrinkage parameter which can be assigned with 
an additional prior (e.g. exponential or inverse gamma prior), 
and d0ð�Þ is the Dirac delta function. Figure 5b shows the two 
components of the spike-and-slab mixture distribution. 
Madjar et al. (2021) proposed graph-structured feature selec-
tion priors for Cox model by assigning a Markov random 
field prior on the latent variables in the spike-and-slab priors 
(5), in which the graph helps to identify pathways of func-
tionally related genes or proteins that are simultaneously 
prognostic in different patient cohorts. Formulation (5) 
implies independence between the priors of the individual bj 
in the slab component. In contrast, a variant of the spike- 
and-slab prior has a g-prior slab (Zellner 1986, Held et al. 
2016) 

bcjc � Nð0; gI
−1
bc;bc
Þ;

where bc ¼ fbj : cj ¼ 1; j ¼ 1; . . . ;pg, c ¼ fcj : j ¼ 1; . . . ; pg, g 
is either a scalar estimated by Empirical Bayes or assigned 
with additional prior, and I−1

bc;bc 
is the expected Fisher infor-

mation for bc.
Another popular shrinkage prior is the horseshoe prior, a 

continuous and global-local shrinkage prior, in which the 
global parameters allow for sharing information across omics 
features and the local parameters allow for adjustments at 
the individual omics feature level (Carvalho et al. 2009, Mu 
et al. 2021). In a similar setup to the Cox model with spike- 
and-slab priors in (5), a horseshoe prior for the regression co-
efficient is 

bjjk
2
j ; s

2 � Nð0; k2
j s

2Þ; kj � Cþð0; 1Þ; s � Cþð0; 1Þ;

where the local parameter kj and global parameter s are both 
half-Cauchy distributed Cþð�; �Þ. With the horseshoe prior, 
the posterior mean of bj will be shrunk by a weight jj ¼

1
1þk2

j
2 ð0; 1Þ as in Fig. 5c, where jj ! 0 induces bj ! 0. Using 

a user-adjustable cutoff value, many coefficients can be 
shrunk to zero, enabling the selection of only a few associated 
omics features (with nonzero coefficients).

Although Bayesian models can quantify uncertainty of esti-
mators more straightforward than penalized regressions, 
most Bayesian Cox-type models for high-dimensional covari-
ates do not have user-friendly and standalone R packages on 
CRAN or GitHub. The main reason is the high computa-
tional cost of running a high-dimensional Bayesian Cox 
model. Advanced users with programming capabilities can 
contact the corresponding authors for original scripts. Since 
Bayesian priors are more flexible than frequentist Lasso-type 
penalties, it can be easier to extend Bayesian models by 
changing shrinkage priors while keeping almost the same al-
gorithm framework. This means that the Bayesian framework 
can be more suitable if one is interested in tailoring the 
shrinkage effects, e.g. to include prior knowledge about the 
importance of omics features, e.g. features corresponding to a 
molecular pathway that is known to be affected in the disease 
under study. For more information on different Bayesian pri-
ors in cancer prognosis, we suggest a recent review by 
Chu et al. (2022) which summarized other different shrink-
age priors on regression coefficients, such as Gaussian- 

Figure 4. Point estimation and uncertainty quantification of regression 
coefficients using Bayesian Lasso Cox model with Laplace prior for 
overall survival prognosis of breast cancer patients from TCGA based on 
transcriptomic data and mandatory demographic variables age and 
ethnicity. Solid dots indicate the posterior mean over 20000 MCMC 
iterations excluding burn-in period, and horizontal lines show the 
corresponding 95% credible intervals.
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gamma, Gaussian, Cauchy, pMOM (product moment 
distribution), piMOM (product inverse moment distribution) 
and peNMIG (parameter-expanded normal-mixture-of- 
inverse-gamma distribution) priors.

5 Survival model validation
Model validation plays an important role in identifying po-
tential issues, such as model misspecification or overfitting. 
This is achieved by revisiting the model’s specifications and 
assumptions following model estimation. For example, the 
Cox model (1) requires proportional hazards and the loga-
rithm of the hazard to be linear with respect to the model 
covariates. The former assumption can for example be 
checked by the cumulative Schoenfeld residuals (Grambsch 
and Therneau 1994), and the latter assumption can be 
checked by plotting a nonlinear functional form (e.g. spline) 
for the effect of a covariate. If the Cox model assumptions 
are not satisfied, one can try certain transformations of cova-
riates (e.g. Box-Cox power transformations, Box and Cox 
1964), allow time-varying coefficients or model interactions 
among covariates (Ng et al. 2023), or investigate patient 
stratification using unsupervised approaches (Cristescu et al. 
2015). However, the assumption checks are usually suitable 
only for low-dimensional models, i.e. for a few clinical varia-
bles or a few factors projected from the high-dimensional 
omics feature space. Novel approaches for assumption checks 
in general high-dimensional settings require further methodo-
logical developments. Johnson and Long (2011) used heuris-
tic methods to investigate the Cox model assumptions by 
separately fitting univariate Cox models one feature at one 
time, and check P-values for the score tests of individual fea-
tures and P-values for testing the proportional hazards as-
sumption of univariate Cox models. But the univariate Cox 
models do not take into account confounding variables. An 
alternative approach is to loosen the model assumptions for a 
more robust modeling approach. One example developed 
specifically for feature selection under possibly nonpropor-
tional hazards in a high-dimensional space is concordance re-
gression (Dunkler et al. 2010).

5.1 Feature stability analysis
One important aspect in model validation when using omics 
or other high-dimensional data is the potential instability of 
feature selection (Kalousis et al. 2007). Feature selection us-
ing penalized regressions as described in Section 4.2 heavily 
depends on the values of the penalty parameters [e.g. for the 
k parameter in Lasso Cox model (2)]. The penalty parameters 

are often optimized by cross-validation (CV) or other resam-
pling methods, and the uncertainty associated with the ran-
dom selection of subsets may result in uncertainty in the 
feature selection, e.g. different CV folds will typically result 
in different selected features. A straightforward way to iden-
tify the most stable features is to find the overlap of identified 
omics features among different data subsets (e.g. CV folds or 
resamples) to avoid high false discovery rate (Zucknick et al. 
2008). One can also perform stability selection (Meinshausen 
and B€uhlmann 2010), which allows to select the most stable 
features at a given Type-I error level for a Lasso or Elastic 
Net Cox model (Sill et al. 2014).

For the Bayesian models in Section 4.3, feature selection 
stability is naturally assessed by the uncertainty of coeffi-
cients’ estimators, as reflected in the posterior variances of bj 
or the posterior selection probabilities pðcjjDÞ (in SSVS), 
which is a natural benefit of utilizing full Bayesian inference. 
Although the uncertainty in feature selection introduces in-
creased variability in the predicted survival probabilities, in 
the Bayesian framework, this can be addressed quite 
naturally by averaging the survival predictions over all mod-
els using Bayesian model averaging (Volinsky et al. 1997). If 
one is interested in a single model, rather than model averag-
ing, the median probability model (Barbieri and Berger 2004) 
can be used for uncertainty analyses in survival and high- 
dimensional omics data (Madjar et al. 2021).

5.2 Survival prediction and calibration
The fundamental goal of any statistical prediction model is to 
achieve a better prediction performance than an existing sta-
tistical model which we could call the ‘conventional model’ 
(Gerds and Kattan 2021). The special nature of the combina-
tion of clinical and/or other known prognostic factors (typi-
cally low-dimensional, with established effect) and novel 
omics features (high-dimensional, with unknown effect) 
should especially be taken into account. Therefore, a survival 
model consisting of only established clinical and/or other 
known prognostic factors should serve as the benchmark (i.e. 
conventional model) for the upcoming modeling. The inclu-
sion of new covariates (e.g. omics features) into a prognostic 
model only makes sense if the new covariates have added 
prognostic value over the established clinical prognostic fac-
tors (De Bin et al. 2014), i.e. the new prognostic model con-
sisting of the new covariates plus benchmark covariates 
improves the prediction performance over the conven-
tional model.

To confirm that the identified clinical and omics features 
have prognostic power with respect to the prediction of 

Figure 5. Density of shrinkage priors in Bayesian survival modeling. (a) Density of the double exponential (Laplace) prior. (b) Density of the mixture spike- 
and-slab prior. The spike component d0ðbjÞ induces bj ¼ 0 and the slab component Nð0; s2

j Þ induces bj 6¼ 0. (c) Density of the horseshoe prior. The 
shrinkage weight jj close to 0 shrinks bj toward zero, and jj close to 1 allows bj to escape the shrinkage.
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patients’ survival outcomes, a model should be both accurate 
(low prediction error) and precise (low prediction uncer-
tainty). The simplest way to demonstrate the prognostic 
power is to dichotomize the prognostic scores [i.e. linear pre-
dictor Xib in the Cox model, Cox (1957)] by its median 
value, and then use a log-rank test to compare the survival 
probabilities of the patients in the two groups, see Fig. 2b. 
Similarly, one can categorize the prognostic scores by multi-
ple quantiles (e.g. 25%, 50% median, and 75%) into multi-
ple groups of patients and perform a log-rank test.

To validate a prediction model systematically (Rahman 
et al. 2017, Royston and Altman 2013), the predictive perfor-
mance of the model is commonly addressed by

� discrimination: the ability of the model to distinguish be-
tween low and high risk patients, 

� calibration: the agreement between the observed out-
comes and predicted survival probabilities, and 

� overall performance: the distance between the observed 
and predicted survival probabilities. 

5.2.1 Discrimination performance
If one focuses on survival prediction at a fixed time point (e.g. 
5-year survival probability), a receiver operating characteristic 
(ROC) curve can be used to evaluate the prognostic (i.e. pre-
diction or discrimination of survival) ability of the survival 
model, often summarized by its area under the ROC curve 
(AUC) (Heagerty et al. 2000), see Fig. 7a for an example. An 
AUC of 0.5 is equivalent to the toss of a coin, and the closer 
the AUC is to 1, the more predictive is the model. When mak-
ing predictions at multiple time points, ROC curves can be 
summarized as time-dependent AUC scores, i.e. AUC scores 
calculated at prespecified time points. Alternatively, the con-
cordance index (C-index) provides a more global, time- 
independent assessment of the discrimination ability of a 
prognostic model, such that a better model predicts higher 
prognostic scores for patients with shorter survival times 
(Harrell et al. 1982, Antolini et al. 2005), i.e. 

C ¼ PfSðtjXiðtÞÞ < SðtjXjðtÞÞ jTi < Tj & di ¼ 1g;

which means in the absence of censoring, any pair of individ-
uals fi; jg with survival times Ti < Tj is concordant if and 
only if SðtjXiðtÞÞ < SðtjXjðtÞÞ for any t (equivalent to ranking 
the prognostic scores Xib > Xjb in a Cox model), where t 
denotes the time instants where there are covariate variations. 
The C-index can be expressed as a weighted average of the 
time-dependent AUC over time (Heagerty and Zheng 2005). 
Therefore, its interpretation is similar to the AUC, where a C- 
index of 0.5 indicates random predictions, while a perfect 
prognostic model would have a C-index of 1. There are mul-
tiple types of C-indices for survival modeling, in particular 
the most frequently used Harrell’s (Harrell et al. 1982) and 
Uno’s C-index (Uno et al. 2011). Uno’s C-index is more 

Figure 7. Discrimination and calibration of survival prediction for 20% TCGA-BRCA validation data. TCGA-BRCA data were split to a 80% training set and 
a 20% validation set. (a) Receiver operating characteristic (ROC) curve estimated at 5-year survival evaluation time point based on the Cox model in  
Fig. 6. The AUC score is the area under the ROC curve. The 45-degree line represents the performance of a random prediction of the outcome event 
with AUC¼ 0.5. (b) Calibration plot estimating 5-year survival probabilities in TCGA-BRCA patients grouped by the quartiles of the predicted probabilities 
based on the Cox model in Fig. 6. The actual 5-year survival probabilities in each group were estimated by the Kaplan–Meier (KM) method with a 95% 
confidence interval by bootstrapping. The cross symbol indicates a bias-corrected KM estimate. The predicted survival probability of each quartile group 
was the mean of the 5-year survival probabilities based on the Cox model for the corresponding group.

Figure 6. Nomogram developed to estimate the overall survival 
probability for TCGA-BRCA patients based on clinical (age) demographic 
(ethnicity) and three selected mRNA features form a Lasso Cox model. 
The dot symbols represent example patient’s information and the triangle 
symbols represent predicted probabilities of 1-, 3-, and 5-year survival.
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robust than Harrell’s C-index, in case there is dependence of 
the concordance on the study-specific censoring distribution.

In the classical Cox modeling framework, both Harrell’s 
and Uno’s C-indices only depend on the linear predictors 
Xib, which is independent of t. But if a model includes covari-
ates with time-dependent effects bðtÞ and/or time-dependent 
covariates XiðtÞ, Harrell’s and Uno’s C-indices are difficult to 
be calculated, since they require the calculation of survival 
functions for each individual over time. In this context, 
Antolini et al. (2005) proposed a time-dependent C-index, 
which assesses the concordance of a model’s survival distri-
bution predictions ŜðtÞ. This means that Antolini’s C-index 
requires the full specification of ŜðtÞ, even though a C-index 
only compares the survival probabilities between any pair of 
individuals, that is, it only assesses whether the relative order 
of estimated survival probabilities is concordant with ob-
served survival outcomes (Blanche et al. 2019). Time- 
dependent prediction indices can better evaluate a model in-
cluding candidate features with time-dependent effects and/or 
time-dependent features. To avoid C-hacking among differ-
ent C-indices in model comparison, Sonabend et al. (2022)
recommended that if all models make survival distribution 
predictions, then select a time-dependent C-index; otherwise 
choose a time-independent measure (e.g. Uno’s C-index); if 
there is a combination of risk- and distribution-predicting 
models, then choose a transformation method for analysis 
(e.g. expected mortality).

5.2.2 Calibration performance
Calibration is to quantify the agreement between the ob-
served and predicted outcomes, which is useful for both inter-
nal and external model validation and is recommended to 
report routinely. The calibration slope is commonly used 
(van Houwelingen 2000), which is the slope of the regression 
of the observed/actual survival probabilities on the model- 
predicted survival probabilities. A survival model can be 
reported with the estimated t-year survival probabilities in 
predefined subgroups, denoted as SmodelðtjgÞ for subgroups 
g ¼ 1; . . . ;G. The observed t-year survival probabilities in the 
subgroups can be estimated by the KM method, denoted as 
SKMðtjgÞ. Using the lnð−lnð�ÞÞ-link, the calibration model is 

lnð−lnðSKMðtjgÞÞÞ ¼ aþ blnð−lnðSmodelðtjgÞÞÞ þ �; (6) 

where � is an error term. If the intercept a ¼ 0 and the slope 
b ¼ 1, it means that the survival prediction model is well cali-
brated. For example, Fig. 7b shows a calibration plot, visual-
izing the calibration of the estimated 5-year survival 
probabilities (with 95% confidence interval by bootstrap-
ping) using the KM method for TCGA-BRCA patients 
grouped by the quartiles of Cox-model predicted survival 
probabilities. Furthermore, one can calibrate a Cox model in 
terms of the baseline cumulative hazard and prognostic score. 
For nonproportional hazard models, calibration using the 
model cumulative hazard function can be considered (van 
Houwelingen 2000).

As an alternative to the calibration slope at a single time 
point, Andres et al. (2018) and Haider et al. (2020) suggested 
the distributional calibration (D-Calibration) for accounting 
survival probabilities across all time points. This can be use-
ful when assessing the entire post-treatment survival predic-
tion, e.g. assessing post liver transplantation survival utility 
in Andres et al. (2018).

5.2.3 Overall performance
Scoring rules can evaluate the accuracy and confidence of 
probabilistic predictions, and assess both discrimination and 
calibration (Gneiting and Raftery 2007, Avati et al. 2020). 
The idea of scoring rules dates back to Brier (1950) which 
assigned a numerical score for verifying ensemble-based 
probabilistic predictions of discrete outcomes.

Graf et al. (1999) proposed the time-dependent Brier score, 
which is the expected mean-squared error of survival proba-
bility prediction at different time points, i.e. 

BSðtÞ ¼
1
n

Xn

i¼1

f
ŜðtjXiÞ

21fti � t & di ¼ 1g

ĜðtiÞ

þ
f1−ŜðtjXiÞg

21fti > tg

ĜðtÞ
g;

where ti is the survival time of ith individual, ŜðtjXiÞ is the 
Cox-model predicted survival probability and ĜðtÞ is the KM 
estimate of the censoring distribution. The benefit of the Brier 
score is that it does not only measure discrimination, similar 
to evaluation measures like the C-index, but also calibration 
performance of a survival model. The integrated Brier score 
(IBS) is as a single measure of prediction accuracy integrating 
BS(t) over an entire follow-up time period. Hielscher et al. 
(2010) presented a comparison between the IBS and a D mea-
sure (Schemper and Henderson 2000), which is an integrated 
measure based on the mean absolute deviation rather 
than the mean-squared error used in IBS. The D measure is 
more robust toward extreme observations and has a smaller 
variance than the IBS.

To overcome potential overfitting when using feature se-
lection and model estimation, the survival predictions and 
model calibration should be evaluated in independent vali-
dation datasets. As independent validation data are seldom 
available, we can split the available data into training and 
validation datasets. However, any single split of the data 
hides partial data from all steps of model building, which 
might introduce bias, it is recommended to use resampling- 
based methods for assessing the survival model’s perfor-
mance. In addition, using resampling-based methods also 
allow us to estimate the uncertainty of the performance es-
timator (Sill et al. 2014; Gerds and Kattan 2021, chapter 
7). This can be done for example by repeatedly splitting the 
data to training and validation sets, and evaluating a sur-
vival model’s performance on the different validation sets 
using various discrimination or calibration indices. The 
0.632þ bootstrap estimator for a discrimination or calibra-
tion index can balance the apparent (training) error and the 
average out-of-bag bootstrap error, and in addition 
accounts for the relative overfitting based on a no- 
information error rate in high-dimensional settings 
(Schumacher et al. 2007, Binder and Schumacher 2008a). 
This is a typical machine learning approach with two levels 
of resampling. The outer layer of resampling is to evaluate 
the prediction performance and the inner layer of resam-
pling (usually CV) is to optimize model’s tuning parame-
ters. We note that the preparatory steps, such as multi- 
modal data standardization and feature pre-selection in the 
context of high-dimensional input data, may affect the sur-
vival prediction performance, and thus should be included 
in the resampling steps for model validation.
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5.2.4 Graphical representation
After confirming that a model is valid (assumptions hold), ac-
curate (low prediction error), precise (uncertainty of perfor-
mance measures properly quantified) and its predictions 
generalizable beyond the training dataset (using independent 
validation data if available), a prognostic nomogram (Kattan 
et al. 1999) can be used to summarize the prognostic effect of 
the identified clinical and omics features on the risk of a spe-
cific year’s overall survival (Fig. 6), which may help the clini-
cians to enhance the patient management and personalized 
treatment strategies. For example, the red colored dots in  
Fig. 6 show the information of the identified five variables 
from an example patient and the corresponding scoring 
points. The summed scoring points of 263 maps to the pre-
dicted 1-year, 3-year and 5-year survival probabilities of this 
patient. Note that most nomograms treat the identified varia-
bles independently in the risk calculation, even though there 
may be significant interactions among the model features that 
were used in the feature selection step. However, visualizing 
such interaction effects would make the nomograms less ac-
cessible and interpretable, and so, there is still a room for im-
provement in how to translate the multivariate risk scores 
into clinical practice.

When an independent validation dataset is available, it is 
recommended to report a calibration plot corresponding to 
the nomogram. Using independent validation data to obtain 
SmodelðtjgÞ in the calibration model (6) is for the generaliza-
tion capacity of the model. Since we here do not have inde-
pendent validation data besides TCGA-BRCA data, Fig. 7 
shows an example calibration plot at 5-year survival evalua-
tion time point based on the built Cox model in Fig. 6 for a 
split 20% TCGA-BRCA dataset.

6 Beyond penalized and Bayesian Cox models
In this tutorial, we mainly focused on penalized regressions 
and Bayesian hierarchical models in the Cox proportional 
hazards framework. One can extend this framework in sev-
eral ways. For instance, one can stay in a likelihood-based 
modeling framework, but replace the partial likelihood func-
tion of the semi-parametric Cox model by alternative likeli-
hood functions (which do not necessarily need to imply 
proportional hazards), e.g. parametric survival models like 
exponential, Weibull, or accelerated failure time (AFT) mod-
els, or Aalen’s additive hazard model (Gorst-Rasmussen and 
Scheike 2012). Alternatively, one can move to a more algo-
rithmic machine learning approach, such as tree-based boost-
ing or bagging methods, e.g. random survival forests 
(Hothorn et al. 2006, Binder and Schumacher 2008b, Jaeger 
et al. 2019), or (deep) neural networks (Wiegrebe 
et al. 2024).

Hothorn et al. (2006) introduced ensemble tree methods 
for analyzing right-censored survival data, which construct 
ensembles from base learners, e.g. binary survival trees for 
each omics feature. Hothorn et al. (2006) also proposed a 
gradient boosting algorithm to predict the survival time of 
patients with acute myeloid leukemia (AML), based on clini-
cal and omics features. Similarly, Binder and Schumacher 
(2008b) developed a likelihood-based boosting method, 
which aims to maximize the Cox partial likelihood function, 
for modeling time-to-event data based on high-dimensional 
omics input data and which also allows the inclusion of a 
small number of mandatory covariates. In general, one needs 

to be cautious if using some machine learning methods that 
are not well-suited for high-dimensional features. For exam-
ple, Kvamme et al. (2019) proposed extensions of the Cox 
model with neural networks, which are only valid if the num-
ber of covariates is smaller than the number of samples, i.e. if 
p < n. A systematic review of deep learning for survival 
analysis, which includes a survey of methods suitable for 
high-dimensional data (p > n), is provided by Wiegrebe 
et al. (2024).

In the case of nonproportional hazards, many likelihood- 
based survival models beyond Cox-type models have also 
been extended to account for high-dimensional omics as in-
put data. For example, Ma et al. (2006) combined Lin and 
Yin’s additive hazard model (Lin and Ying 1994) with princi-
pal component regression for dimension reduction of omics 
features, which was applied to the study of gene expression- 
based survival prediction for diffuse large B-cell lymphoma. 
Engler and Li (2009) added the Elastic Net penalty in an ac-
celerated ATF model, which assumes that the effect of a co-
variate accelerates or decelerates the life course of patients. 
Schmid and Hothorn (2008) and Barnwal et al. (2022) used 
boosting algorithms to learn parametric AFT models. Ha 
et al. (2014) considered the Lasso, SCAD and a penalized h- 
likelihood for feature selection in frailty models which as-
sume that individuals have unobserved heterogeneity cap-
tured by a latent random term Z, which adapts the Cox 
model (1) into hðtjXÞ ¼ Zh0ðtÞ expðXbÞ.

6.1 Advanced survival models: cure models, 
competing risks and multi-state models
In some situations, survival data may be different from  
Fig. 1c (also Section 2.1), where it was presumed that all indi-
viduals will eventually experience the event of interest. Liu 
et al. (2012) studied the Lasso and SCAD feature selection 
for the proportional hazard mixture cure model, in which a 
certain fraction of individuals will never experience the event 
of interest. Tapak et al. (2015) investigated Lasso, Elastic Net 
and likelihood-based boosting for microarray-based survival 
modeling with competing risks, such as ‘progression’ versus 
‘death from noncancer cause’, i.e. the event of a patient can 
occur due to one of multiple distinct causes. There is a 
growing awareness of the impact of competing risks when de-
veloping prognostic models with high-dimensional input 
data, e.g. Binder et al. (2009), Ambrogi and Scheike (2016)
and Fu et al. (2017). For a single individual who can experi-
ence several possible events, Dutta et al. (2017) proposed a 
multi-state model to identify risk factors in different stages of 
disease based on high-dimensional input data.

7 Toward single-cell data analysis
The cellular heterogeneity of complex sample mixtures pose 
challenges and also opportunities for precision medicine and 
survival prediction. For example, Zhou et al. (2019) showed 
that tumor microenvironment-related gene expression signa-
tures do not only accurately predict the survival among colon 
cancer patients, but also serve as biomarkers for identifying 
patients who could potentially benefit from adjuvant chemo-
therapy. Single-cell technologies provide an unprecedented 
opportunity for dissecting the interplay between the cancer 
cells and the associated tumor microenvironment, and the 
produced high-dimensional data should also augment exist-
ing survival modeling approaches. The emerging single-cell 
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atlases are providing a detailed and quantitative overview of 
tissue composition and organization, and will advance both 
biomedical research and clinical practice (Elmentaite 
et al. 2022).

Currently, the focus of statistical model development for 
single-cell data analysis is to understand cell type composi-
tion and its impact on gene regulation and transcriptional dy-
namics, usually based on only a small number of samples/ 
individuals. On the one hand, the underlying statistical mod-
els for single-cell data analysis are still in development and 
continuously being re-evaluated and challenged (Kharchenko 
2021). On the other hand, survival analysis tackles disease 
and health contexts at the individual level, and usually 
requires a relatively large number of individuals for sufficient 
statistical power. In particular, the development of improved 
computational methods is urgently needed to enable the con-
sideration of multiple layers (e.g. individual-level, cellular- 
level, molecular-level) of information when integrating 
groups of individuals and omics data from a variety of molec-
ular modalities. Therefore, current approaches often map the 
findings from single-cell omics data to large-scale bulk se-
quencing omics and survival data, rather than jointly analyz-
ing single-cell omics and survival data. For example, Guo 
et al. (2018) introduced a generalizable approach to first 
study T-cells in 14 nonsmall cell lung cancer (NSCLC) 
patients and to identify gene signatures from the tumor- 
enriched T cell clusters, and then investigated these gene sig-
natures using bulk RNA-seq and survival data from larger 
TCGA-NSCLC patient cohort. Similarly, Zhang et al. (2020)
developed a scRNA-seq-based approach to reconstruct a 
multilayer signaling network based on 16 glioma patients, 
and then investigated the network genes using survival data 
from TCGA Chinese glioma genome atlas (TCGA-CGGA) 
patients. However, direct joint analysis of survival and single- 
cell omics data from multiple cellular hierarchies requires fur-
ther methodological developments and new statistical and 
machine learning methods.

8 Discussion
Although survival analysis faces many modeling challenges, 
mainly due to censored outcomes, it represents a well- 
established methodology for finding risk factors associated 
with patients’ survival. The identification of omics bio-
markers for survival prognosis may provide systematic means 
to guide patient management and personalized treatment and 
diagnostic strategies. In this tutorial, we provided a compre-
hensive workflow for survival analysis with high-dimensional 
omics and standard clinical data, with a specific focus on 
feature selection of survival-associated omics features and 
survival model validation. We covered many penalized 
regressions and Bayesian models for feature selection and sur-
vival prediction, accounting for their specific assumptions 
and applications. Examples of real data and R scripts have 
been made available to illustrate the use of different methods, 
which should help researchers to choose and apply suitable 
methods for their survival analysis applications (https://ocbe- 
uio.github.io/survomics). We note that this review only con-
siders methods for right-censored time-to-event data, i.e. 
where all individuals are assumed to be followed continu-
ously from the start of the study, but where the follow-up pe-
riod might end before the event (e.g. death) was observed. 
Other types of censoring include interval censoring and left 

truncation, and appropriate statistical methods dealing with 
these censoring patterns should be chosen accordingly.

Most of the current methods for survival analysis do not 
explicitly take into account the complex structures within 
and between multi-omics data, such as gene regulation and 
DNA-protein interactions. Regulatory networks constructed 
either based on prior biological knowledge or using data- 
driven, yet biologically explainable approaches, may help es-
tablish useful methodologies for survival analysis that are 
more effective for deriving biological insights as well as en-
able improved clinical translation. However, to achieve a 
comprehensive and biologically meaningful integration of 
high-dimensional multi-omics data, there is a need for contin-
ued development of computational and statistical approaches 
that consider both technical and biological intricacies of the 
data and technologies, respectively (Wissel et al. 2023). This 
is currently a very active research field, and we expect to see 
many improved multi-omics methods for survival prediction 
in the future.

Another limitation of most of the reviewed methods is that 
they identify omics features prognostic of survival, but they 
cannot determine causal relationships. Causality is a funda-
mental notion to understand omics features causing disease 
progression, which will allow one to reliably intervene omics 
features for targeted therapies. There are two popular causal 
inference models, Pearl’s structural causal model (SCM) and 
Rubin’s causal model (RCM), both of which introduce per-
turbations to draw causal inference. Farooq et al. (2023) uti-
lized SCM-based causal discovery approaches to unravel 
relationships between omics features and survival of breast 
cancer patients. However, to identify reliable causal relations 
for clinical applications, laboratory-based experiments, e.g. 
clustered regularly interspaced short palindromic repeats 
(CRISPR) techniques (Wang and Doudna 2023), are often 
necessary to verify the functional relevance of the identified 
omics features. High-dimensional RCM-based mediation 
analysis has been used to investigate the indirect effect trans-
mitted by omics features between an exposure and survival 
outcomes (Song et al. 2020, 2021). Causal mediation analysis 
is an important tool, which considers the problem of decom-
posing the causal effect of treatment/exposure into direct and 
indirect effects (Lange and Hansen 2011, VanderWeele 
2011). The direct effect corresponds to the effect of a treat-
ment directly on the survival outcome, while an indirect effect 
corresponds to the effect of a treatment on the outcome that 
is due to its effect on an intermediate variable (e.g. gene ex-
pression) that also has a causal effect on the survival out-
come. Targeted learning also fills a much needed gap 
between statistical modeling and causal inference (van der 
Laan and Rose 2011, 2018). Tuglus and van der Laan (2011)
used targeted maximum likelihood estimation to provide an 
interpretable causal measure of variable importance for the 
discovery of biomarkers and omics features. Another way to 
formalize personalized medicine is dynamic treatment 
regimes (Chakraborty and Moodie 2013, Tsiatis et al. 2019, 
Deliu et al. 2023) that encompasses causal inference and 
takes into account for the variability in omics, environment 
and lifestyle factors for each individual to improve the treat-
ment of a particular patient. However, all the causal machine 
learning methods require further methodological develop-
ments for adaptation to survival modeling with high- 
dimensional input data.
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