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Executive Summary 
This report describes the development, implementation and beta-testing of multi-modal AI algorithms for 
integrating diverse data types and predicting the survival of pancreatic cancer patients. The report outlines the 
key features and functionalities of these AI algorithms and the utilization of modern AI techniques for model 
optimization and hyperparameter tuning. Key developments include a new algorithm to perform multi-modal 
feature selection on high-dimensional datasets and a novel methodology to benchmark multiple AI models on 
multi-modal datasets. Beta-testing of these implementations is carried out on a public TCGA pancreatic dataset 
and key results are presented. All the methods, models, and benchmarks have been implemented in R as open-
source code (https://github.com/bblodfon/survmob/). The benchmarking analyses and results, along with the 
code, are openly available on GitHub (https://github.com/bblodfon/tcga-survmob/). Overall, the report 
showcases the advancements made in developing openly-accessible and reliable survival prediction algorithms to 
empower translational researchers and clinicians in effectively managing patients with pancreatic cancer. 
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1. Introduction 

Deliverable 4.1 directly relates to PANCAIM WP4 Task 4.1. The main objective of Task 4.1 is to develop multi-
modal AI algorithms for integrating diverse data types (such as genomic, pathological, and radiological 
information) and constructing explainable prediction models. Task 4.1 involves the development of feature 
selection algorithms to identify subsets of predictors for various clinical outcomes, prioritizing clinical significance 
and cost-effectiveness. It also encompasses the investigation of methodologies for ranking the tested AI models 
and selecting the modalities that are most useful for the prediction of patient survival. These will provide the 
basis for the development of clinically applicable AI models that leverage routinely available and affordable data 
and can provide valuable insights for translational researchers and clinicians. This report outlines the main efforts 
in AI model development and the exploration of new modeling techniques to implement, test and compare such 
AI models in the context of pancreatic cancer patients’ survival prediction. 

1.1. Abbreviations 

 

Table 1: Acronyms and abbreviations 

ROC Receiver Operating Characteristic 

AUC Area Under the Curve 

IBS Integrated Brier Score 

ERV Explained Residual Variation 
RCLL Right-Censored Log Loss 
KM Kaplan-Meier 

ML Machine Learning 

AI Artificial Intelligence 

CRAN Comprehensive R Archive Network 

TCGA Cancer Genome Atlas 

PDAC Pancreatic Ductal Adenocarcinoma 

PAAD Pancreatic Adenocarcinoma 

AFT Accelerated Failure Time 

RSF Random Survival Forests 
OOB Out-Of-Bag error 

RFE Recursive Feature Elimination 

eFS Ensemble Feature Selection 

mRNA Gene expression data 

miRNA microRNA data 

CNA Copy Number Alterations data 

RPPA Reverse Phase Protein Array data 

SVM Support Vector Machines 
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2. Results and Discussion 

2.1. AI models review 

The project involved an extensive evaluation of various types of survival prediction models, most of which are 
implemented in the R programming language. To ensure comprehensive coverage, we consulted the CRAN task 
review on survival analysis1, which provides a curated list of relevant survival modeling packages. We further 
explored various survival models described in research publications. Our focus was on selecting models that have 
demonstrated superior predictive performance in the literature. We specifically prioritized open-source 
implementations that adhere to sound software code practices and can be effectively tuned (Table 2). Several 
models did not meet the desired criteria during the evaluation. For instance, the survival Support Vector 
Machines faced challenges with optimization on a small dataset2. The Gradient Boosted Cox Regression model3 
suffers from limited development and lack of parallelization, making alternatives like XGBoost more favorable. 
Additionally, the model-based boosting family of algorithms4, including Generalized Linear, Additive and Boosting 
Tree models, exhibited frequent memory errors and were very slow during training, significantly hampering their 
computational efficiency. Based on the survey, the mlr3 framework was utilized [1] for effective model tuning, 
evaluation, and benchmarking, along with the R package mlr3proba [2], which offers a unified interface for 
survival machine learning (ML) models and performance evaluation measures (Table 3). 

Table 2: Overview of survival models tested. 

Model Abbreviation Prediction 
type 

R 
package 

Publication 

Cox Proportional Hazards CoxPH risk + survival survival [3] 

Regularized Cox Regression with elastic net 
penalty 

CoxNet risk glmnet [4] 

Likelihood-based Boosting CoxBoost risk + survival CoxBoost [5] 

Extreme Gradient Boosting (Cox) XGBoost (Cox) risk xgboost [6] 

Extreme Gradient Boosting (AFT) XGBoost (AFT) risk xgboost [7] 

Random Survival Forests (Logrank spitrule) RSF (Logrank) risk + survival ranger [8] 

Random Survival Forests (C-index spitrule) RSF (C-index) risk + survival ranger [9] 

Random Survival Forests (Maximally selected rank 
statistics splitrule) 

RSF (Maxstat) risk + survival ranger [10] 

Random Survival Forests (Extremely Randomized 
Trees) 

RSF 
(ExtraTrees) 

risk + survival ranger [11] 

Accelerated Oblique Random Survival Forests AORSF risk + survival aorsf [12] 
 

One of the key challenges in survival modeling is assessing the performance of survival models based on their 
predictions. There exist two main prediction types in survival modeling: the survival distribution (a patient's 
survival probabilities over a specified time period) and the risk score (a single time-independent value where a 
higher number corresponds to a higher risk of an event taking place, e.g., a patient’s death). Survival models, 
based on their implementation details, can either output the first prediction type, the second or both (usually via 
a transformation from the main prediction output). In Table 2, we list the default prediction types a user can 
expect by using the survival models from the corresponding R packages. 

Several performance measures exist to evaluate survival models. These can either assess the discriminatory 
power of a model (i.e., how well it ranks patients - here, input is the patients’ risk scores), how well a model is 
calibrated (i.e., how closely the predicted survival probabilities agree numerically with the actual survival 
outcomes - input is the patients’ survival distributions) or the model’s overall predictive ability (i.e., both 
calibration and discrimination). For example, measures such as the integrated area under time-specific ROC curve 

 

1 https://cran.r-project.org/web/views/Survival.html 
2 https://github.com/mlr-org/mlr3proba/issues/287 
3 https://github.com/gbm-developers/gbm 
4 https://github.com/boost-R/mboost 

https://github.com/therneau/survival
https://glmnet.stanford.edu/
https://github.com/binderh/CoxBoost
https://github.com/dmlc/xgboost
https://github.com/dmlc/xgboost
https://github.com/imbs-hl/ranger
https://github.com/imbs-hl/ranger
https://github.com/imbs-hl/ranger
https://github.com/imbs-hl/ranger
https://github.com/ropensci/aorsf
https://cran.r-project.org/web/views/Survival.html
https://github.com/mlr-org/mlr3proba/issues/287
https://github.com/gbm-developers/gbm
https://github.com/boost-R/mboost


 
 
H2020-SC1-FA-DTS-2020-1                                                                                                                               GA number: 101016851 
 PANCAIM  
 

WP4, D4.1, V1.0 
Page 7 of 21 

(ROC-AUC [13]) and the concordance index (C-index [14]) are measures of discrimination, D-calibration is a 
measure of calibration [15], the Integrated Brier score (IBS [16]) is used to evaluate both discrimination and 
calibration performance. In Table 3 we list several survival performance metrics and the prediction type they 
require as input. 

Table 3: List of survival metrics for the assessment of discrimination and calibration performance of survival models. 

 Prediction type 

Metric Risk Survival 

C-index YES  

ROC-AUC YES  

Right-Censored 
Log Loss (RCLL) 

 YES 

Integrated Brier 
Score (IBS) 

 YES 

D-calibration  YES 
 

It is crucial to exercise caution and consider the aforementioned factors (prediction types and performance 
measures) when evaluating the performance of survival ML models. What should guide such choices is primarily 
the specific scientific or clinical question at hand [17]. Therefore, depending on the objective, one may need to 
prioritize aspects such as discriminating between patients or generating more accurate and calibrated survival 
predictions, and as such, appropriate evaluation metrics and models should be selected. To highlight several of 
the aforementioned modeling challenges and provide a comprehensive guide for future survival model evaluation 
in the context of multi-modal data integration, we compiled a step-by-step R tutorial5 using TCGA survival and 
omics data. Additionally, we have uploaded a paper to the arXiv preprint server which outlines a general 
workflow for survival analysis [18]. Our aim is to provide researchers with a valuable resource for survival 
modeling and prediction, presenting practical and effective strategies for conducting survival analysis and 
enabling the exploration of diverse modeling techniques. 

Another challenging task is AI model tuning. Survival ML models incorporate hyperparameters, which greatly 
influence the model’s behavior and require careful tuning. Achieving the desired model performance and 
execution time depends largely on the optimization techniques employed. The search space for hyperparameters 
is often vast, demanding thorough exploration and evaluation of different values and combinations. Moreover, 
the intricate interplay between hyperparameters and model architecture adds further complexity. Therefore, 
efficient optimization strategies are necessary to overcome these challenges and achieve optimal model 
performance. As an example of model hyperparameter tuning, a CoxNet model with 2 hyperparameters (alpha, 
lambda) was tuned on a gene expression dataset from TCGA’s PAAD patient cohort (Figure 1). The first 
optimization strategy, random search [19], explores the hyperparameter space and discovers many suboptimal 
configurations with lower C-index values. On the other hand, Bayesian optimization [20] quickly converges to 
hyperparameter spaces with higher C-index values, resulting in faster model optimization and better tuning. 
Therefore, Bayesian optimization was the strategy we used for all subsequent AI model tuning. 

 

5 https://ocbe-uio.github.io/survomics/survomics.html 

https://ocbe-uio.github.io/survomics/survomics.html
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Figure 1: Comparison of two optimization strategies for AI model tuning (Random search and Bayesian optimization). 

The figure illustrates the range of values considered for the two regularization hyperparameters of a CoxNet model (alpha and lambda), 
showcasing the exploration of various combinations by the optimization strategies. 

 

2.2. Open-source repositories 

We used TCGA’s pancreatic ductal adenocarcinoma cohort (PAAD public dataset) to benchmark and test the 
survival AI models reviewed. The data retrieval and initial patient filtering were carried out using the 
curatedTCGAData and TCGAutils R packages [21]. These filtering steps were implemented to ensure a more 
reliable and meaningful analysis by selecting relevant patient samples, removing incomplete or heterogeneous 
data, reducing potential confounding effects and maintaining a sufficient number of patients and events for 
robust AI modeling. In total, 145 patients were included, out of which 85 died of pancreatic cancer (censoring 
rate of 41%). The median follow-up time for the surviving patients was 16 months, with a standard deviation of 15 
months. The multi-modal dataset for the 145 PDAC patients consisted of 5 different modalities (common features 
across all the patients in the cohort), including 6 clinical features (age, gender, number of lymph nodes, 
pathologic stage, radiation therapy, residual tumor) and 4 omic layers of biological profiling information. We 
carefully considered which omic layers to include from the ones available from the TCGA PAAD cohort. Our main 
objective was to incorporate a maximum number of omic layers, while ensuring a sufficiently large sample size 
(>100 patients) in the cohort, without significantly increasing the censoring rate. Accordingly, the following omics 
were selected: gene expression (mRNA), segmented somatic Copy Number Alteration calls (CNA), microRNA 
expression (miRNA) and methylation beta values (Methylation). Appropriate pre-processing steps were applied to 
each specific omics layer, the most important of which were variance filtering (keeping the 10000 most variable 
features due to the ultra-high dimensionality of several of the omics data), model-based imputation of missing 
values using XGBoost, removal of pairwise correlated features exceeding 0.95 Pearson correlation, log2-
transformation and standardization of features to have a mean of 0 and a standard deviation of 1, ensuring that 
all features are on a comparable scale. In the end of the pre-processing step, every omic had ~10K features, 
except miRNA which had ~350 features.  

We have made our initial code for model development, testing, and several investigations (as the one shown in 
Figure 1 for AI model tuning), available on a GitHub repository, serving as a comprehensive resource for more 
detailed information (https://github.com/bblodfon/paad-survival-bench/). In order to advance our work, we 
prioritized improving the code quality by incorporating rigorous testing and comprehensive documentation. 
Additionally, we focused on modularizing the codebase to enable seamless integration of new enhancements and 
functionalities while building upon the existing code and workflows. The result of this process was the 
development of a new R package called survmob (https://github.com/bblodfon/survmob/) for benchmarking 

https://github.com/bblodfon/paad-survival-bench/
https://github.com/bblodfon/survmob/
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survival ML models on multi-omics data. Key features of the survmob package include preprocessing mlr3-
compatible pipelines for various types of data (including omic datasets), a list of survival ML models that can 
provide both risk and survival distribution predictions by applying transparent transformations for models that do 
not support both prediction types (Table 2), predefined ranges for tuning the models’ hyperparameters, as well as 
a wide range of survival measures including both discrimination and calibration measures (Table 3).  

Furthermore, the survmob R package incorporates a novel ensemble feature selection algorithm, called eFS, 
which leverages Random Survival learners (RSFs) and a Recursive Feature Elimination (RFE) optimization strategy 
to identify robust features for survival modeling from high-dimensional omic datasets. Additionally, survmob 
offers a benchmarking methodology for evaluating the performance of different models and ranking the 
different omics according to their contribution to model’s performance when they are used as part of a multi-
modal dataset. Lastly, we provide a post-hoc Bayesian-based analysis of benchmarking results, facilitating the 
interpretation and comparison of survival models. With its extensive capabilities, survmob serves as a valuable 
tool for researchers and practitioners involved in survival ML analysis studies using multi-omics datasets. We 
applied survmob on several TCGA studies and made the results available on GitHub 
(https://github.com/bblodfon/tcga-survmob/). This repository includes the detailed benchmark on the pancreatic 
TCGA PAAD cohort, the findings from which are presented in this report. 

2.3. Ensemble feature selection 

Given that high-dimensional biological datasets often contain thousands of features, it is crucial to perform 
feature selection prior to utilizing machine learning models for robust and cost-effective outcome prediction. 
Selecting relevant features additionally helps improve model performance, reduces overfitting and results in 
faster model training and tuning [22]. Moreover, to achieve cost-effective and explainable models, a minimum set 
of interpretable features is often required [22]. Therefore, we set out to implement a novel ensemble feature 
selection algorithm (eFS), that generates a ranked list of predictive features on a given high-dimensional dataset. 
The eFS algorithm employs a wrapper-based feature selection approach called Recursive Feature Elimination 
(RFE), which selects the most predictive features by evaluating the performance of a random survival forest 
model (RSF) trained on subsets of features. RFE is a backward selection method that starts with all features and 
iteratively eliminates the least important ones based on their impact on the model's performance. The best 
feature subset is the one that achieved optimal performance according to the chosen survival metric (Table 3) 
and resampling scheme.  

For executing the eFS algorithm using the different PAAD omic datasets, the Out-Of-Bag (OOB) error of random 
forests (equivalent to 1 - C-index) serves as an optimization metric. The OOB error has the advantage of being 
very fast to calculate and it does not require an additional resampling scheme, as all (subsampled) patients are 
used to train each RSF model. 

 

https://github.com/bblodfon/tcga-survmob/
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Figure 2: Ensemble feature selection workflow 

 

Our current implementation includes five different versions of Random Survival Forests (RSFs), see the last five 
rows of Table 2. This approach introduces diversity on both the algorithmic and dataset levels. By using a 
heterogeneous ensemble of stochastic models, the selected features from the RFE process may vary even with 
the same input data. Additionally, by subsampling the data and selecting different subsets of patients, we can 
derive optimal feature subsets, allowing for diversity at the dataset level. Also, Random Forests in general require 
less tuning compared to other models, making them well-suited for our scenario. By combining these ideas in an 
ensemble feature selection workflow (Figure 2), we obtain a collection of the best feature subsets, each derived 
from a slightly different patient population and potentially utilizing a different RSF model. Aggregating these best 
feature subsets can result in a more robust consensus feature list, where features are ranked based on how 
frequently they appear in the collection of the best feature sets [23,24,25]. Figure 3 illustrates two examples of 
ranked features obtained from the eFS algorithm, when applied to the mRNA and CNA omic datasets from TCGA's 
PAAD cohort. Lastly, our implementation prioritizes user-friendliness by utilizing R6 classes6 and parallelized 
execution, ensuring faster retrieval of results and facilitating further downstream analysis. 

Using as input to the eFS algorithm the 4 high-dimensional omic datasets from the PAAD cohort, we generated a 
collection of optimal feature subsets for each omic data type, whose performance was evaluated based on the C-
index metric (1 - OOB error). Figure 4 (left) shows that these features are highly predictive in terms of 
discrimination performance (C-index ranges from 0.70 to 0.85) and we also observed that some omics are more 
predictive than others (mRNA and Methylation have higher median C-index than miRNA and CNA). Upon closer 
examination of each individual RSF model’s contribution, we observe that the AORSF model results in a better 
performance at the cost of utilizing a larger number of features (Figure 4, right). Aggregating the results across all 
RSF models, it seems that on average a minimum number of features are required to achieve the 
aforementioned level of performance, independent of the omic used (less than 25 features). 

 

6 https://adv-r.hadley.nz/r6.html, https://r6.r-lib.org/ 

https://adv-r.hadley.nz/r6.html
https://r6.r-lib.org/
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Figure 3: Ranked features associated with survival outcomes (optimizing for better patient discrimination via the C-index) on the PAAD 
TCGA dataset  

(Left: CNA, Right: mRNA). 

 

  

Figure 4: Discrimination performance (C-index, left) and number of selected features (right) per omic dataset and RSF model used in the 
eFS algorithm 

 

We next assessed the robustness of the eFS algorithm, i.e., investigated how similar are the best feature subsets 
generated in each RFE run. We used the Nogueira similarity [26], which takes into account the number of features 
of each omic. This measure remains unaffected by randomly drawing independent feature sets of varying sizes 
and assessing their similarity (i.e., a chance-corrected similarity measure). We observed that all omics profiles 
have a Nogueira similarity score < 0.4, indicating a relatively poor agreement (best features are in general more 
different than are the same), suggesting that the aggregation of these sets provides a more robust consensus 
feature set per omic dataset (Figure 6). 
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Figure 5: Stability assessment of the eFS algorithm 

2.4. Multi-omics benchmarking 

We have developed a novel methodology, implemented in the survmob R package, for benchmarking multiple 
survival ML models using a multi-modal dataset, such as the pancreatic TCGA PAAD patient cohort (Figure 6). The 
benchmarking process begins with a patient cohort containing clinical information and various data modalities, 
potentially high-dimensional (i.e., having more features than patients). Each data modality can encompass 
different aspects of the patient's biology, including molecular factors, phenotypic characteristics (such as 
extracted features from radiology or pathological images) or other relevant indicators. The cohort is divided into 
a training set (80% of the cohort) and a test set (20%) for model validation, ensuring that the proportion of 
censored patients remains consistent between the two sets. Next, the eFS algorithm is applied to each high-
dimensional data modality in the training set, generating a ranked list of predictive features for each modality. 
The top-ranked features are then selected to subset the corresponding data modality in both the train and test 
sets. Continuing, these reduced datasets, along with the clinical data, serve as building blocks to create all 
possible combinations of multi-modal datasets by combining the selected features in various configurations. 
These generated datasets are used to tune the selected AI models, optimizing a specific survival performance 
metric on the training set. Finally, the trained models are evaluated on bootstrapped versions of the validation 
patient set to obtain a more robust estimate of their performance (variance estimation and confidence intervals) 
and allow for better decision making when comparing the different models or selecting the best-performing one. 
Lastly, the workflow enables further post-hoc processing of the benchmarking results using Bayesian methods. 

 



 
 
H2020-SC1-FA-DTS-2020-1                                                                                                                               GA number: 101016851 
 PANCAIM  
 

WP4, D4.1, V1.0 
Page 13 of 21 

 

Figure 6: Multi-omics AI modeling and benchmarking workflow applied to TCGA’s PAAD patient cohort 

 

In the TCGA’S PAAD cohort, we split the patients into a training set (116 patients) and a test set (29 patients). The 
four high-dimensional omics (mRNA, CNA, miRNA and Methylation datasets) were used as input to the eFS 
algorithm and the top 20 features per omic were selected. A total of 31 multi-omics datasets were generated 
encompassing various combinations of omics and clinical data (5 modalities in total result in 25 combinations 
minus the empty features dataset). We used the AI models outlined in Table 2, along with predefined 
hyperparameter tuning ranges, both provided by the survmob R package. The primary clinical outcome used was 
patient survival, given that it was the only available outcome in the TCGA data (other clinical outcomes related to 
PANCAIM goals were not readily accessible). To tune the AI models, we employed 5-fold stratified cross-
validation, ensuring a balanced representation of censored patients across the folds. The C-index metric was used 
for optimization, and Bayesian Optimization was performed with 100 evaluations to identify the optimal 
hyperparameter configuration for each model on a specific multi-modal dataset. 

To evaluate the models' performance, we employed 100 bootstrapped resamplings on the test set (parallelized 
for faster execution). The survival measures used for model evaluation included the C-index, which assessed 
model discrimination performance, and the Integrated Brier Score (IBS), which considers both discrimination and 
calibration performance (Table 3). Notably, we normalize the IBS scores of the ML models to those of a simple 
Kaplan-Meier (KM) model with no features. The resulting score is more interpretable as it represents the 
percentage increase in performance, also known as explained residual variation or ERV, relative to the baseline 
KM model. IBS-ERV values below 0 indicate models performing worse than Kaplan-Meier, while values above 0 
indicate better-performing models (1 is a perfect score). 
Our workflow addresses three key questions in the context of survival prediction: 

• Ranking of models: It allows us to rank the tested survival ML models based on a chosen evaluation 
metric, providing insights into their relative performance from worst to best, independent of the chosen 
multi-modal dataset they were trained on. 

• Modality ranking: It facilitates the ranking of different modalities (such as omic datasets and clinical data) 
to identify the most informative ones for patient survival prediction. This information guides the selection 
of modalities to be included in the training of a final predictive model. 

• Baseline model comparison: It enables the comparison of the tested models with a baseline model that 
utilizes only clinical data. This comparison is performed on a separate validation set, allowing us to assess 
the added value of incorporating additional modalities into a predictive model. 
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2.5. Analysis of benchmarking results 

To comprehensively evaluate the benchmarking results, address the aforementioned key questions, while 
accounting for the fact that the generated multi-modal datasets share common features and are therefore 
interdependent (every single data modality can be a part of many multi-modal datasets tested, see Figure 6), we 
adopted an alternative approach compared to conventional methods used to compare models across different 
datasets [27]. The benchmarking data were used to fit linear mixed-effects Bayesian models [12, 28, 29], from 
which we could derive posterior distributions of the performance scores (e.g., C-index) on the validation set, 
either per AI model or data modality used in the benchmark. These types of Bayesian models are also called 
random-effects or hierarchical models, because they offer the advantage of accounting for the correlation 
between datasets as well as the within-resample correlation when bootstrapping from a single validation set [30]. 

We employed separate Bayesian models to rank models and omics respectively, while considering the 
interdependence between the tested multi-modal datasets. For model ranking, the Bayesian analysis generated a 
posterior distribution for each AI model, representing the expected value of a specific metric (e.g., C-index). In the 
case of omics ranking, the Bayesian methods allowed us to draw a posterior distribution comparing the use of a 
specific data modality (omic dataset) in a multi-modal combination versus not including it at all. This comparison 
was made possible thanks to the design of our benchmarking workflow (Figure 6), which facilitated the 
assessment of each omic’s contribution in a comprehensive manner. 

2.6. Model ranking 

For each survival ML model used, we summarized the respective posterior distribution using credible intervals. In 
the context of Bayesian statistics, a credible interval represents a range of values that are likely to contain the 
true parameter value (e.g., a performance metric such as Harrell’s C-index, see Figure 7). It is a measure of 
uncertainty and provides a specific probability level, such as 95%, within which the parameter value is expected 
to fall. Figure 7 and Figure 8 (left) show the model ranking results using two different measures: Harrell’s C-index 
and the IBS-ERV. We observed that the rankings are highly measure-dependent, e.g., the “RSF (Maxstat)” model 
has the best discrimination performance according to the C-index, while it scores worse than a simple Kaplan-
Meier model (with no features, used as a reference model) when model calibration is also assessed using the IBS-
ERV metric (Figure 8, left). In the case of the IBS-ERV metric, only the CoxBoost and AORSF models were able to 
lead to a combined discrimination and calibration performance better than the KM baseline model, considering 
that all possible multi-modal datasets from TCGA’s PAAD cohort were tested (IBS-ERV > 0, Figure 8, left). 

  

Figure 7: Model ranking according to the C-index metric 
Left: Credible intervals for the discrimination performance (C-index).  

Right: Posterior distribution differences relative to the best performing model across all the possible multi-modal datasets combining 
different omics and clinical features from the PAAD TCGA cohort. A region of practical model equivalence (ROPE) of 2% is drawn and the 

Probabilities of Practical Equivalence (PPEs) between the different models are shown. 
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Figure 8: Model ranking according to the Integrated Brier Score (IBS). 
Left: Posterior distributions and credible intervals for the IBS. Right: Posterior distribution differences relative to the best-performing model 

across all the possible multi-modal datasets combining different omics and clinical features from the PAAD TCGA cohort. A region of 
practical model equivalence (ROPE) of 5% is drawn and the Probability of Practical Equivalence (PPE) with the second best model is shown. 

‘<’ symbols are used to denote inferior performance scores, and as a result, the corresponding distributions are not visualized. 

 

The Bayesian approach described above offers a distinct advantage in addressing the question: "What is the 
probability that one model is practically equivalent to another?" To answer this question, we computed the 
difference between the posterior distributions of the AI models with respect to a chosen performance metric, 
relative to the best-performing model. To establish a practical threshold for equivalence, we define a Region of 
Practical Equivalence (ROPE) [31] encompassing a 2% difference for the C-index, where model differences falling 
within this range are considered practically indistinguishable. Based on the visualization of the posterior 
distribution differences and the ROPE area for the C-index (Figure 7, right), we observe that the top 5 models 
exhibit practically identical discrimination performance. In terms of the IBS-ERV metric (Figure 8, right), employing 
a larger 5% ROPE, the second-ranking model (CoxBoost) demonstrates only 8% equivalence relative to the best-
performing model (AORSF). Consequently, based on these findings, we can confidently select AORSF as the best-
performing model from our benchmark evaluation. 

2.7. Omics ranking 

Figure 9 and Figure 10 show the posterior distribution differences for the C-index and IBS-ERV performance 
metrics. These differences reflect the impact of including a specific data modality (omic dataset) in a multi-modal 
combination, regardless of the AI model employed. A larger distribution difference for a specific modality reflects 
its importance. We observed that out of the five different modalities used in our benchmark workflow, only the 
clinical and mRNA features have the potential to contribute significantly to a positive practical difference in both 
discrimination and calibration performance, as shown in Figure 9 and Figure 10  (C-index and IBS-ERV metric 
respectively). This finding also suggests that for the TCGA PAAD cohort, the most important data modalities for 
survival prediction remain the same regardless of the performance metric chosen. 
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Figure 9: Ranking of omics by their contribution to a practical difference in discrimination performance (C-index) when incorporated into 
a multi-modal dataset. 

Ranking results are aggregated across all the tested models via Bayesian methods. PPPD = Probability of Positive Practical Difference, PNPD 
= Probability of Negative Practical Difference. The size of the ROPE (Region of Practical Equivalence) is 2%. 

 
 
Using a ROPE of 2%, we can assess the probabilities of different omics contributing to a positive, negative, or no 
practical difference in performance. When incorporating clinical features into a multi-modal dataset, there is a 
high probability (89% for C-index, 85% for IBS-ERV) of observing a 2% or greater increase in performance, 
regardless of the AI model used for training. In contrast, the use of mRNA data shows a lower probability (50% for 
C-index, 78% for IBS-ERV), indicating a smaller but still positive performance impact. On the other hand, the 
inclusion of other omics (Methylation, miRNA, and CNA) was associated with higher probabilities of negative 
differences in performance, suggesting that their incorporation may actually lead to a decline in performance in 
the validation set, as assessed by both the C-index and IBS-ERV metrics. These findings highlight the consistent 
importance of clinical and mRNA features and the varying impact of different omics modalities on survival 
prediction. 
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Figure 10: Ranking of omics by their contribution to a practical difference in both discrimination and calibration performance (Integrated 
Brier Score) when incorporated into a multi-modal dataset 

Ranking results are aggregated across all the tested models via Bayesian methods. PPPD = Probability of Positive Practical Difference, PNPD 
= Probability of Negative Practical Difference. The size of the ROPE (Region of Practical Equivalence) is 2%. 

2.8. Comparison with Baseline Cox model 

We conducted a comprehensive comparison of the tested AI models with a baseline model that exclusively 
utilizes clinical data. Based on our benchmarking workflow (Figure 6), this comparison is conducted on a separate 
validation set, allowing us to address two important questions: Can an AI model trained on multi-modal data 
outperform a baseline Cox Proportional Hazards (CoxPH) model [3] trained on clinical data alone? And if so, 
which combinations of models and omics demonstrate superior performance? Bootstrap confidence intervals 
were employed to summarize and assess the empirical results on the validation set from TCGA’s PAAD dataset, 
without the use of post-hoc Bayesian analysis. Results here refer to both the discrimination and calibration 
performance (measured by the C-index and IBS-ERV metrics) on bootstrapped test sets from the validation 
patient cohort. 

The baseline CoxPH model stands out in terms of discrimination performance, as indicated by the C-index, 
surpassing almost all other combinations of omics, clinical data, and AI models (Figure 11). Interestingly, 
regardless of the AI model employed, the exclusive use of clinical data consistently outperforms alternative 
multi-modal configurations, highlighting its predictive efficacy in accurately ranking predicted patient risks in the 
TCGA PAAD cohort. These findings underscore the predictive power of clinical data in survival prediction tasks, 
which was expected, emphasizing its significance in achieving optimal discrimination performance. 
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Figure 11: Bootstrap confidence intervals for assessing discrimination performance (C-index) on the test TCGA PAAD patient cohort. 
The top 12 combinations of survival ML models / multi-modal datasets are shown on the y-axis. The “Cox Baseline” (dotted vertical line) 

indicates the median C-index test set performance using a Cox Proportional Hazards model trained on clinical features only (used as a 
baseline model here). 

 

On the other hand, when evaluating both the calibration and discrimination performance using the IBS-ERV 
metric (Figure 12), we observed that the CoxBoost and AORSF models showcased significantly improved 
performance compared to the baseline CoxPH model. This suggests that achieving such levels of overall predictive 
performance requires a combination of advanced ML models and a wider range of omics/modalities. Notably, 
among the top 12 combinations of models and multi-modal datasets, various modalities were included (all expect 
CNA, in accordance with the omics ranking for the IBS-ERV metric in Figure 10), highlighting the need for a 
diverse set of data sources to achieve optimal overall performance. 
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Figure 12: Bootstrap confidence intervals for assessing both discrimination and calibration performance (Integrated Brier Score) on the 
test TCGA PAAD patient cohort 

The top 12 combinations of survival ML models / multi-modal datasets are shown on the y-axis. The “Cox Baseline” (dotted vertical line) 
indicates the median IBS test set performance using a Cox Proportional Hazards model trained on clinical features only (used as a baseline 

model here). 

 

3. Conclusions 

The report outlines the development of new methodologies for feature selection and AI model benchmarking on 
a multi-modal dataset. The methods developed are applicable to any data modality, regardless of the data source. 
All AI models, performance metrics, methodologies, source code, and generated results are openly accessible 
through online GitHub repositories (https://github.com/bblodfon/survmob/,https://github.com/bblodfon/tcga-
survmob/). The TCGA pancreatic ductal adenocarcinoma (PAAD) dataset was used to develop, apply and test 
these methodologies, as the PANCAIM project multi-modal data was not accessible at the time. Four high-
dimensional biological omic datasets were selected, while features extracted from radiology and pathological 
images were excluded due to insufficient number of patients with enough information across all data modalities. 
Moreover, due to the unavailability of other clinical outcomes aligned with PANCAIM goals, the primary clinical 
outcome under investigation was patient survival in this report. 

In the context of developing clinically applicable AI models, our benchmarking results on the PAAD pancreatic 
cohort highlighted the importance of considering the specific clinical question at hand. For patient stratification 
purposes, utilizing clinical data alone proves to be sufficient in TCGA PAAD cohort, regardless of the AI model 
employed. However, when aiming for more accurate and well-calibrated survival predictions that can significantly 
impact clinical decision making and patient management in pancreatic cancer, the incorporation of multiple data 
modalities and the use of advanced ML models are essential. Among the models analyzed in the benchmark 
study, the Accelerated Oblique Random Survival Forests (AORSF) emerged as the recommended AI model, 
achieving optimal overall discrimination and calibration performance. Furthermore, the incorporation of 
optimally selected mRNA features, in addition to clinical data, resulted in further improvement in the overall 
predictive capability of the tested AI models. 

https://github.com/bblodfon/tcga-survmob/
https://github.com/bblodfon/tcga-survmob/
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To further enhance the effectiveness of our framework, future applications on larger and higher-quality multi-
modal and multi-cohort datasets, such as those available in PANCAIM, will be invaluable in driving improvements 
in pancreatic cancer health care and facilitating more comprehensive analyses. 

4. Degree of Progress 

100% 

5. Dissemination Level 

The Deliverable 4.1 is public. 
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