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Executive Summary 
 
This document details the review of established pancreatic ductal adenocarcinoma (PDAC) subtypes and the 
development, implementation and beta-testing of an artificial intelligence (AI) multi-modal deep learning (DL)-
based clustering approach for stratifying PDAC patients. A review of state-of-the-art PDAC subtyping methods is 
presented, evaluating and comparing their conclusions and methodologies. New patient stratification findings are 
presented based on analyses on the publicly-available TCGA-PDAC dataset [1], assessing cluster stability and 
validating the methodology with an external PDAC dataset. Key innovations include an unsupervised multi-modal 
DL algorithm for patient stratification and a new DL methodology to analyze the importance of various data 
modalities. The report highlights the clinical relevance of the identified patient clusters, alongside the application 
of explainable AI (XAI) techniques for a better understanding of the disease biology. The new methodologies have 
been implemented as open-source code and are freely accessible on GitHub. In summary, the report illustrates the 
progress made in developing clustering algorithms to stratify patients and assist translational researchers and 
clinicians in the effective management of pancreatic cancer patients. 
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1. Introduction 
The Deliverable 4.2 directly relates to WP4 Task 4.2. The Task 4.2 aims to develop a data-driven PDAC patient 
classification by integrating data from multiple experiments (data modalities), and the study of the information 
provided by the different data sources. It also includes the evaluation of established PDAC subgroups and assessing 
the reproducibility of the new PDAC subtypes using various stability metrics, such as those derived from data 
resampling and cross-validation. This will ensure that the clustering structure is not unique to the specific datasets 
used. The methodology is validated on an external PDAC dataset. The identification of novel multi-factorial subtypes 
revealed distinct biological characteristics and potential subtype-specific therapeutic vulnerabilities, which will be 
crucial for selecting the most effective treatments for the PDAC patients. 

 

2. Results and Discussion 

2.1. Review of clustering models for PDAC patient stratification 

Pancreatic cancer patient stratification is critical due to the heterogeneous nature of the disease, which impacts 
treatment efficacy and patient outcomes. Stratifying patients based on molecular and clinical characteristics allows 
for the identification of distinct subgroups with unique biological behaviors and treatment responses. This precision 
approach facilitates the development of tailored therapies, improves prognostic predictions, and enhances the 
ability to identify patients who may benefit from specific interventions. Therefore, by understanding the diverse 
pathways and mechanisms driving pancreatic cancer, stratification enables more effective and personalized 
treatment strategies, ultimately aiming to improve survival rates and quality of life for patients. 
 
Table 1 summarizes the state-of-the-art in pancreatic cancer patient stratification at the time of writing this report 
(June 2024). The table includes various studies that have employed different datasets and methodologies to find 
pancreatic cancer subtypes. It highlights the diversity in data sources, clustering techniques, number of identified 
subtypes and clinical relevance of the clusters. From this table, we can conclude that gene expression is the most 
common modality used for patient stratification, both in single-omics and multi-omics studies; in recent years, 
there has been a higher interest in multi-omics analysis, although that is usually associated to a lower sample size; 
NMF and Consensus Clustering, both applied individually or together, are the most common techniques to cluster 
patient samples; two is the most common number of subtypes, in particular, when using the TCGA pancreatic 
cohort dataset; clusters are not always associated to the survival outcome, especially in unsupervised analyses 
where the survival information is not used to form the groups. 

Table 1: Overview of previous pancreatic cancer patient stratification studies, sorted by publication year 

Dataset Patients Biological sources Multi-
modal 

Method Number of 
subtypes 

Log-rank test* Year/ 
Publication 

GSE17891 27 Gene expression 
(microarray) 

No NMF + 
Consensus 
Clustering 

3 0.038 2011 / [2] 

GSE71729 147 Gene expression 
(microarray) 

No NMF + 
Consensus 
Clustering 

2 0.007 2015 / [3] 

EGAS0000
1000154 

93 Gene expression 
(RNA-seq) 

No NMF 4 0.0302 2016 / [4] 

TCGA 184 DNA methylation No NMF 3 Not provided 2017 / [5] 

TCGA 76 Gene expression 
(RNA-seq + miRNA 

+ lncRNA); DNA 
methylation 

Yes SNF 2 Not provided 2017 / [6] 

Not 
provided 

288 Gene expression 
(microarray) 

No Consensus 
clustering 

5 4 × 10–9 2018 / [7] 

TCGA 164 Gene expression 
(RNA-seq) 

No HC 2 0.05 2020 / [8] 

TCGA 45 Protein (RPPA); Yes SNF 2 0.18 2020 / [9] 
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gene expression 
(RNA-seq + miRNA); 

DNA methylation 

TCGA 146 Gene expression 
(RNA-seq + miRNA); 
DNA methylation; 

clinical 

Yes Deep learning 
(autoencoder) + 

K-Means 

2 1x10–6 
(supervised) / 

0.005 
(unsupervised) 

2021 / [10] 

CPTAC 105 DNA (CNA); gene 
expression (RNA-

seq); protein 
(expression + 

phosphorylation + 
glycosylation sites 

abundances) 

Yes NMF 2 1.2x10–5 2021 / [11] 

IPX000279
6002 

217 Protein 
(expression) 

No Consensus 
clustering 

3 0.01 2022 / [12] 

TCGA 160 Gene expression 
(RNA-seq + miRNA 

+ lncRNA); DNA 
methylation + DNA 
(mutation); clinical 

Yes Ensemble of 10 
clustering 
algorithms 

2 < 0.001 
(supervised) 

2023 / [13] 

*The log-rank test is a non-parametric statistical test used to determine whether there are significant differences in the survival 
distributions of two or more groups of patients (here, the clusters of PDAC patients). 
SNF: Similarity Network Fusion; HC: Hierarchical Clustering; NMF: non-negative matrix factorization; CNA: Copy Number 
Aberrations; CPTAC: Clinical Proteomic Tumor Analysis Consortium. 

 
As shown in Table 1, NMF is the most commonly-applied approach for stratifying patients. However, in recent years, 
DL-based clustering has been shown to outperform traditional clustering algorithms in various bioinformatics 
applications, including bioimaging, cancer genomics and biomedical text mining [14]. Previous works have 
predominantly used architectures like autoencoders or variational autoencoders, typically as two-step models 
(training the DL component separately from the clustering step) or applied only to single-omics data [15–17]. Yet, 
optimizing a joint loss function that integrates both the autoencoder and the clustering objectives has 
outperformed previous methods in tasks such as cancer category recognition, survival analysis, and clinical 
parameter enrichment in the pan-cancer TCGA dataset [18]. Its efficacy has also been demonstrated in single-cell 
multi-omics data [19]. Consequently, DL-based clustering approaches hold significant promise for future clinical 
applications in biomedical data analysis. 

Lautizi et al. systematically evaluated the established PDAC subtypes by Collisson et al. [2], Moffit et al. [3], Bailey 
et al. [4] and Puleo et al. [7], across nine publicly available gene expression datasets [20]. The clustering analysis 
showed inconsistencies in subtype identification across different datasets, and in some instances, it revealed a 
different number of PDAC subgroups than initially reported, questioning the true number of the PDAC subtypes. 
Next, they developed sixteen classification models to assess the predictive capability of these signatures for tumor 
subtypes. The classification accuracy varied significantly, ranging from approximately 35% to 90%, indicating 
instability of the signatures. Furthermore, permuted subtypes and random gene sets yielded similar performance 
levels. This study revealed significant limitations and inconsistencies stemming from technical biases in sample 
preparation and tumor purity, indicating that PDAC molecular signatures lack generalizability across datasets. This 
emphasizes the difficulties of using transcriptome data for PDAC subtyping and the need for more robust biomarker 
signatures. 

Other PANCAIM partners also examined the stability of the established PDAC subtypes in the Deliverable 3.4, 
confirming the limits of the current established subtypes. To overcome this situation, a new transcriptomics-based 
Consensus Classification System (PDAConsensus) was developed to integrate these subtypes, providing a more 
comprehensive understanding of PDAC molecular subtypes. Additionally, a deep learning tool (CLAM-Kalimuthu) 
was developed to automatically classify haematoxylin-eosin (H&E) staining whole-slide images into their 
corresponding Kalimuthu classification [21,22]. 

https://paperpile.com/c/7meb0q/TgN8
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Yet, a multi-omics approach is crucial for deriving more robust and clinically valuable insights. By integrating 
multiple omics data within the same cohort, we can obtain more detailed information. This integrative analysis 
reduces the impact of experimental and biological noise, identifies various aspects within the same molecular layer 
(such as mutations and copy number variations in DNA), and enhances our understanding of different levels of 
biological organization. 

Therefore, this report focuses on finding novel PDAC subtypes using multi-omics data. We developed a deep 
clustering model using multi-omics data to identify subgroups of PDAC patients by optimizing both the autoencoder 
and the clustering metrics. RNA-seq and DNA methylation omic profiles were selected as these were the most 
commonly used across the published methods (Table 1). Cluster stability is assessed through data resampling 
techniques and stability metrics. Our approach also leverages the capabilities of NMF for feature selection. We 
compared our method with several others listed in Table 1, including two early integration techniques (K-Means 
and HC), two NMF variants (jNMF and intNMF), and SNF. The model development and results are shared in 
https://github.com/albertolzs/edc_mo_pdac. To further validate our methodology, we used an external dataset 
[23], whose results are publicly available in https://github.com/albertolzs/edc_mo_pdac_val. 

2.2. A DL-clustering model applied to the TCGA PDAC cohort 

Dataset: We used PAAD-TCGA data from the Firehose Broad GDAC using the R packages curatedTCGAData and 
TCGAutils [24]. Patients with PDAC as primary tumor and having both RNA-seq data (Illumina HiSeq, upper quartile 
normalized RSEM TPM gene expression values) and DNA methylation data (Illumina Human Methylation 450) were 
selected. In total, we had 147 patients with both omics profiles. 

Preprocessing: High-dimensional data, especially when combined with small patient cohorts, which is the typical 
case in omics profiling, limits the learning capacity of machine learning models. Therefore, it is usually 
recommended to reduce the data dimensionality before the clustering. The omics data were preprocessed using a 
Scikit-learn pipeline [25]. Similar to previous studies [10,26,27], the steps included: 

● RNA-seq data: 
○ Initially consisted of 20,501 features (genes). 
○ Removing features with zero values in more than 20% of patients. 
○ Retaining 50% of the most variable features using mean absolute deviation (MAD). 
○ Removing features with a Pearson correlation higher than 0.85. 
○ Applying log2 transformation. 
○ Performing a NMF-based feature selection. 
○ Normalizing the data using z-score normalization. 

● DNA methylation data: 
○ Initially consisted of 485,577 features (CpGs). 
○ Excluding features from sexual chromosomes. 
○ Selecting only CpGs with gene symbols in the array. 
○ Filtering out features with missing values in more than 20% of patients. 
○ Retaining 10% of the most variable features using MAD. 
○ Imputing missing values using average values. 
○ Performing a NMF-based feature selection. 
○ Normalizing the data using z-score normalization. 

Feature selection: For the NMF-based feature selection, we adopted a strategy similar to Carmona-Saez et al. [28], 
which is reported as an unsupervised method to identify important features [29,30]. NMF aims to find two non-
negative matrices whose product approximates the original matrix. The resultant weight matrix, with dimensions 
equal to the number of components by the number of final features, is composed of vectors called basis 
components. We ranked the features for each NMF basis component in descending order of significance and 
selected the most influential features. The number of features from each basis component was determined through 
a hyperparameter optimization. To determine the optimal number of NMF components, we experimented with 
various numbers (8, 16, 32, 64, 128, 256, and 512) and computed the reconstruction error using beta-divergence. 

https://github.com/albertolzs/edc_mo_pdac
https://github.com/albertolzs/edc_mo_pdac_val
https://github.com/albertolzs/edc_mo_pdac_val
https://github.com/albertolzs/edc_mo_pdac_val
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While selecting more components reduces the error, it also increases overfitting and computational demands. 
Based on some preliminary hyperparameter optimization results, which aimed to identify the best set of features, 
we ultimately used 512 components in our analysis. 

The two data matrices were used as input for a deep clustering algorithm that combines a multi-modal deep 
autoencoder (DAE) and K-Means. A DAE is an artificial neural network used for feature extraction, reducing the 
dimensionality of the input data in a non-linear manner by mapping it into a hidden representation. The encoder 
layers create this hidden representation (or embedding), while the decoder layers attempt to reconstruct the 
original input. The encoder branches were concatenated before the latent representation, following a middle 
integration approach that maps multi-omics data to a joint latent representation. Each block consisted of a linear 
layer, PReLU activation, and a batch normalization layer. We used a joint loss function, which is the weighted sum 
of the reconstruction error (mean absolute error, MAE) of the DAE and the sum of squared distances of the samples 
to their closest cluster center (inertia): 

 
 
where: 
n is the number of samples, 
x is the input sample, 
x̂ is the reconstructed sample, 
µ is the cluster center that contains the sample, 
λ is the coefficient that controls the trade-off between the autoencoder and clustering loss function. 
 

Both the multi-modal deep autoencoder and the cluster centers were initialized with prior independent pretraining. 
This pretraining step is a common practice with small datasets [19] due to K-Means sensitivity to initialization. The 
algorithm workflow is illustrated in Figure 1. 
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Figure 1: Deep clustering algorithm architecture 

 
Hyperparameter optimization: To optimize the model performance and ensure it accurately captures underlying 
data patterns, we performed hyperparameter tuning using the Silhouette score as the objective function. The 
Silhouette score, a widely used clustering metric, is calculated as the average of the mean intra-cluster distance and 
the mean nearest-cluster distance for each sample [31]. We utilized the Tree-structured Parzen Estimator (a 
Bayesian optimization method) algorithm to find the best hyperparameters [32]. We employed a 5-nested 5-fold 
cross-validation strategy to evaluate and ensure the robustness of the clusters. During this process, the training 
data was employed for model training, the validation data for hyperparameter selection and model evaluation, and 
the testing dataset only for assessing the model performance and stability on an independent dataset. To prevent 
data leakage, both the preprocessing pipeline and the clustering model were applied in each iteration. The 
optimized hyperparameters included: the number of hidden layers, the number of neurons, latent space 
dimensionality, number of input features, epochs for both pretraining and training, lambda coefficient for the joint 
loss function, and the number of clusters. The learning rate was automatically set using a learning rate finder 
strategy [33]. 

Figure 2 illustrates the model loss function and the Silhouette score used as an independent evaluation metric for 
the clustering solution. As there is no baseline for clustering due to the absence of ground truth, for each metric, 
we utilized the results from the hyperparameter optimization process to establish comparison baselines (dotted 
red lines): the largest loss function value when the lambda coefficient was within {best lambda coefficient} ± 0.02; 
and the average Silhouette score obtained during optimization. These results demonstrated that the clustering 
model outperformed a random clustering solution and was not overfitted to the training data. Despite significant 
differences (Wilcoxon test) in the model loss function between training and validation data, likely due to the small 
dataset size and the metric's sensitivity to outliers; the Silhouette score remained consistent across training, 
validation, and test datasets. 
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Figure 2: Model loss function (left) and Silhouette score (right) during hyperparameter optimization.  
The results were obtained using a nested cross-validation strategy, ensuring the testing set remains completely blind to the training process, 

thus demonstrating the algorithm generalizability. Baseline scores are shown as red lines 

 
The number of clusters was shown to be the most significant hyperparameter during optimization, as determined 
by the fANOVA hyperparameter importance evaluation algorithm [34]. Most models in the nested cross-validation 
achieved the best metrics with two clusters (Figure 3). Table 1 further supports this, showing that two clusters is 
the most common solution, indicating a robust number of subtypes in the current dataset. When the model was 
trained on the whole dataset, it identified a cluster with 97 samples, and another one with 50. 

 

   

Figure 3: Slice plot scoring of every possible option of the hyperparameters 
The x-axis represents the options, and the y-axis the silhouette score; the color corresponds to the number of the trial during the 

optimization process. 

 
Cluster stability: During the 5-nested 5-fold cross validation, 25 clustering solutions are computed and validated. 
For each of the 25 clustering solutions, we performed pairwise comparisons among the generated clusters, keeping 
only the samples present in each pair. This yields a total of 300 comparisons. The metric used was the adjusted 
mutual information (AMI). The mutual information score measures the similarity between two clustering solutions 
of the same data, while the AMI modifies the mutual information score to account for randomness [35]. We 
selected AMI for its practical properties. It is unaffected by the specific label values: changing the class or cluster 
label values does not alter the score. Additionally, AMI is symmetric, meaning that swapping the folds will yield the 
same score. This is useful for evaluating the consistency of two independent clustering solutions on the same 
dataset when the true labels are unknown. 
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Figure 4: Cluster stability plot representing the AMI scores for pairwise comparisons of clusters generated during nested cross-
validation. 

Clusters across splits are relatively consistent with respect to the average value of 0.53, with most comparisons resulting in 
moderate to high AMI scores. Random baseline score is shown as a red line. 

 
The AMI returns a score of 1 when the two partitions are identical, meaning they match perfectly. For random 
partitions, which are independent labelings, the expected AMI score is around 0 on average. In our analysis, the 
pairwise AMI had an average value of 0.53 (Figure 4). The cluster stability, as measured by AMI, is relatively 
consistent, as the scores do not deviate drastically. Overall, the figure indicates that the clusters generated across 
different splits of the nested cross-validation are generally stable, with most comparisons yielding moderate to high 
AMI scores. Stable clusters indicate that the clustering results are consistent and robust  to variations in the data, 
a crucial step for ensuring that the clustering method produces meaningful and consistent results. 

2.3. Clinical relevance of the identified PDAC clusters 

Understanding the clinical relevance of clusters in pancreatic cancer is vital for advancing patient care and 
treatment strategies. Clustering patients based on molecular characteristics can reveal subgroups with distinct 
biological behaviors and therapeutic responses, providing insights into disease mechanisms and progression. 
However, since clusters were identified using unsupervised learning, we cannot directly determine their clinical 
relevance. Thus, we tested their associations to clinical parameters. 

The log-rank test revealed that the patients in these two clusters had significantly different survival probabilities 
(Figure 5). The Cox proportional hazards model returned a hazard ratio of 1.75 (95% confidence interval: 1.24-2.49), 
indicating that patients in cluster 0 have a 75% higher risk of adverse outcomes compared to those in cluster 1. This 
suggests that cluster 0 corresponds to a more aggressive disease subtype. 
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Figure 5: Kaplan-Meier analysis of the survival differences between clusters identified by our DL-clustering method. 

 
Table 2 shows the p-values of testing the association of clusters with clinical parameters. We used the Kruskal-
Wallis test on the age at initial diagnosis, as well as the chi-square test on sex and three discrete clinical pathological 
parameters quantifying the progression of the tumor (tumor stage), cancer in lymph nodes (neoplasm histologic 
grade) and metastases (metastasis stage). No other significant associations were identified. For reference 
comparisons, we applied HC, K-Means, and advanced multi-omics clustering algorithms, including SNF [36], intNMF 
[37], and jNMF [38]. Interestingly, only the clusters identified by the multi-omics clustering algorithms showed an 
association with sex, whereas those identified by HC and K-Means did not yield any significant associations with 
other clinical parameters, including overall survival. Furthermore, compared with the other previous methods in 
Table 1, our algorithm identifies the clusters with the highest association to survival data in TCGA in an unsupervised 
way. This underscores the impact of our method on patient stratification, demonstrating its capability to identify 
clusters with significant prognostic differences. 

Table 2: p-values of testing the association of clusters with clinical parameters 

 Deep 
clustering 

K-Means HC SNF intNMF jNMF 

Overall Survival 0.001 0.212 0.469 0.138 0.155 0.165 

Diagnosis age 0.920 0.074 0.210 0.250 0.555 0.689 

AJCC tumor stage 0.970 0.810 0.597 0.810 0.805 0.906 

AJCC metastasis stage 0.457 1.000 1.000 1.000 1.000 0.865 

AJCC neoplasm histologic grade 0.876 0.192 0.909 0.159 0.523 0.809 

Sex 0.359 0.076 0.432 0.035 0.047 0.023 

 
The lack of significant associations to clinical parameters highlights the challenge of identifying clusters associated 
with multiple external variables, as most multi-omics models in similar studies in other cancer types found only 1-
2 significant associations with clinical parameters across various cancer types [26,39]. This difficulty arises because 
clustering algorithms aim to uncover novel biological insights rather than being biased by known clinical 
associations. Overall survival provides a reliable measure, unlike more subjective clinical parameters. Thus, being 
the overall survival an objective clinical endpoint, it would imply that these clusters are based on novel biological 
insights and could be valuable for patient stratification in future studies. 

 

 

https://paperpile.com/c/7meb0q/efd0
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2.4. Explainable AI sheds light on PDAC biology 

To better understand the biology of pancreatic cancer, we used XAI techniques to unbox how decisions of the black-
box deep learning model are made. In medicine, explainability is crucial as it can reveal new insights and shared 
characteristics among the most important biomarkers or features. By identifying molecular signatures and 
biological markers associated with specific patient subgroups, biomarker discovery enables precise characterization 
and classification of individuals based on their unique disease profiles. Therefore, it has the potential to contribute 
to the recommendation of more personalized treatments. 

We firstly employed post-hoc interpretation methods to assign importance scores to each input feature. Attribution 
methods were utilized to determine the contribution of each input feature to the output, elucidating their impact 
on predictions for specific neurons. We used various algorithms available in Captum [40]. Specifically, we employed 
two gradient-based methods and one perturbation-based method: integrated gradients [41], gradient SHAP [42] 
and feature ablation. After computing attributions for every feature in all samples using these methods, we 
computed the mean (in absolute values) across the methods and sorted the features accordingly. 

 

Figure 6: Top-25 input features across feature importance methods (the score is represented as the values of 
attributions x 10−4 on the y-axis). 

The feature importance analysis reveals the crucial role of DNA methylation in unsupervised PDAC patient stratification. 

 
Figure 6 presents a visualization of the feature scores for the top 25 features. The analysis highlights the feature 
cg10794257, a CpG site associated with Hox genes, which play a crucial role in organogenesis and animal 
development [43,44]. This gene has been implicated in promoting tumors in pancreatic cancer [5,45]. The second 
methylation feature, cg03306374, was previously included in a DNA methylation signature for identifying PDAC 
[46]. A positive correlation was found between sites located in the CpG island at the 5’-end and PDAC-
hypermethylated cg03306374. Interestingly, there was no significant difference in the values of the top 25 features 
between the clusters. 

An important observation is that all of the most important features were methylation features. To go deeper into 
this finding, we assessed the contribution of each omics to the final clustering solutions using MM-SHAP. MM-SHAP 
is a performance-agnostic multi-modal score based on Shapley values that quantifies the extent to which a multi-
modal model uses individual modalities [47]. Surprisingly, the relative contribution of each modality across the 
samples was found to be quite homogeneous, as depicted in Figure 7a. On average, DNA methylation patterns 
contributed 71% to the final predictions, while the remaining 29% originated from RNA-seq profiles. This 
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underscores the crucial role of DNA methylation in PDAC patient stratification. We further investigated whether 
there was a difference in the omics relative contributions between the two clusters (Figure 7b). However, the Mann-
Whitney U test returned a non-significant p-value. Additionally, no differences were found in the DNA methylation 
or gene expression value distributions between the two clusters (Figure 7c and 7d).This suggests that it is not the 
individual features alone that determine the prognosis, but rather the interaction between different entities (such 
as gene expression and methylation features) that is more closely linked to the phenotype. Therefore, the 
relationships between two or more variables are not merely additive; instead, their combined effects significantly 
contribute to cancer aggressiveness. 

 

Figure 7: Omics contribution analysis and distribution by cluster 

 
As the neural network functions through the combined activity of various neurons across each layer to generate 
predictions, we also examined the roles of individual neurons. We first identified the neuron importance in the 
embedding layer using the layer conductance [48], and then we analyzed the influence of the input features and 
the relative contribution of each omic using the neuron conductance [49]. The contribution of each data modality 
on every neuron in the embedding layer is illustrated in Figure 8. On average, methylation data contributes 54%, 
while RNA-seq accounts for the remaining 46%. However, when considering neuron importance, the disparity 
increases; for example, methylation influences 63% of the first eight neurons. Generally, the most important 
neurons were predominantly activated by methylation patterns, whereas less important neurons were more 
influenced by gene expression. We found that 8 out of the 50 neurons were activated by only a single modality: 6 
by methylation and 2 by RNA-seq data. 
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Figure 8: Omics relative contribution to neurons in the embedding layer sorted by importance 

 
We integrated transcriptomics and epigenomics data, the most common combination in multi-omics cancer studies 
[50]. Overall, transcriptomics is the most frequent omic modality used in multi-omics studies for both cancer and 
non-cancer diseases. Although gene expression has been considered to provide the highest predictive power, 
predictive models can be based on different omics profiles and cancer types, as there is no universal best omics 
data type, and results depend on the cancer type [51]. Interestingly, our findings indicated that DNA methylation 
patterns were more crucial for our clustering solution. Both attribution methods, for the entire model, and neuron 
conductance, for specific units in the network, confirmed the significant role of methylation data. Our findings are 
supported by research studies, where it has been demonstrated that changes in DNA methylation profiles drive 
tumor progression in PDAC [52,53] and are strongly associated with patient survival [54]. Also a recent study 
identified DNA methylation as the most predictive omic data type for accurately distinguishing PDAC from chronic 
pancreatitis among DNA methylation, mRNA, and miRNA data [46]. 

2.5. Validating the results using an external dataset 

To further validate our approach, we used an external dataset. We obtained the dataset from Osipov et al [23]. This 
dataset includes several data modalities: DNA (SNVs, INDELs and CNVs), gene expression (RNA-seq), proteomics 
(tissue and plasma), lipidomics and pathology features. We integrated four modalities - gene expression (2000 
features), pathology (820 features), CNVs (648 features), and SNVs (611 features) - which resulted in a cohort of 57 
patients. 

 

Figure 9: Model loss function (left) and Silhouette score (right) during hyperparameter optimization in an external dataset. 

 
We first validated our algorithm. As this dataset has been already preprocessed with a feature selection, the only 
preprocessing we applied was a z-score normalization. Same as in the DL-clustering model applied to the TCGA 
PDAC cohort section, the result of the optimization is shown in Figure 9. Compared to the previous Silhouette score 
of 0.28, the current score is 0.23, indicating a very similar performance. While the number of clusters remains the 
most influential hyperparameter, determining the precise number of subtypes is less clear in this dataset, with 
three clusters showing a slightly higher score (Figure 10).  



H2020-SC1-FA-DTS-2020-1                                                                                                                               GA number: 101016851 
PANCAIM 

WP4, D4.2, V1.0 
Page 16 of 21 

 

   

Figure 10: Slice plot scoring of every possible option of the hyperparameters during optimization in an external datase 
The x-axis represents the options, and the y-axis the silhouette score; the color corresponds to the number of the trial during the 

optimization process. 

 
Clusters were significantly associated with survival data, with the log-rank test achieving a similar p-value as in the 
other dataset. One of the clusters had a much poorer prognosis, as shown in the survival curves in Figure 11. The 
clusters 0 and 1 had very similar survival curves, however, we decided to keep them separately for a better 
statistical analysis, as the model optimization suggested. 

 

Figure 11: Kaplan-Meier analysis of the survival differences between clusters in the external dataset 

 
As with previous results, the clusters demonstrated a significant association only with overall survival (Table 3). 
Standard methods like K-Means and HC did not show any significant associations. 

Table 3: p-values of testing the association of clusters with clinical parameters. 

 Deep clustering K-Means HC 

Overall Survival 0.001 0.522 0.466 

Diagnosis age 0.153 0.842 0.653 

TNM Stage 0.804 0.551 0.497 

Sex 0.529 0.348 0.356 
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The multi-omics relative contribution analysis using MM-SHAP showed that the pathology was the most important 
data modality (Figure 12). RNA-seq obtained a very similar value to our previous result (29% in the TCGA dataset; 
33% in the external dataset). 

 
Figure 12: Omics relative contribution. CNV: Copy Number Variation 

 
As a final step, we assessed the importance of the identified potential biomarkers (Figure 8). We selected the top 
25 features for the three most important neurons, using only RNA-seq input features since this dataset lacks 
methylation data. Out of them, only six were present in the external dataset. We then evaluated the significance 
of these genes in the survival data, both as a combined biomarker panel and individually, as shown in Figure 13. 
Based on their p-values, three genes seem to be associated with survival when considered as a combined panel, 
and two when analyzed individually. This could support our methodology and findings as a strategy for discovering 
biomarkers. 

 

  

Figure 13: Forest plot of identified biomarkers and their association to patient survival in the external dataset 
a) Hazard ratio and p-values using each biomarker individually; b) Hazard ratio and p-values using a combined 

biomarker panel. 



H2020-SC1-FA-DTS-2020-1                                                                                                                               GA number: 101016851 
PANCAIM 

WP4, D4.2, V1.0 
Page 18 of 21 

 

Identifying a robust molecular signature in PDAC is a challenging problem. Previous molecular signatures have 
produced controversial and inconsistent results across different datasets [20], as discussed in the previous “Review 
of clustering models for PDAC stratification” section. Despite numerous reports of potential biomarkers, none have 
yet been translated into clinical practice [55]. Consequently, further research is essential to discover a reliable 
biomarker panel for stratifying PDAC patients, which would facilitate personalized medicine and potentially lead to 
more effective treatments for this highly lethal cancer. 

3. Conclusions 
The report describes the development of a multi-modal deep clustering algorithm for patient stratification and the 
use of XAI techniques to elucidate disease biology and model decisions [1]. Algorithms, performance metrics, XAI 
techniques, methodologies, source code, and results are available in online GitHub repositories. Due to the 
unavailability of PANCAIM project multi-modal data at the time of writing this report, the PAAD TCGA dataset was 
utilized for the development, application, and testing of the aforementioned methodologies, and an external multi-
modal PDAC dataset was used for further validation [48]. 

We expanded the previous work of other PANCAIM partners (Deliverable 3.4) in analyzing the stability of 
established PDAC subtypes, and successfully stratified the PAAD pancreatic cohort into two new groups through 
unsupervised learning. These two subtypes showed a significant association to survival, proving that they were 
clinically relevant. The subsequent application of XAI techniques allowed us to assess the relative contributions of 
various omics and identify potential biomarkers. The multi-omics profile analysis revealed an important role of DNA 
methylation, partially supported by previous experimental studies. This approach was validated using an external 
dataset, yielding results that support our patient stratification strategy. We hope this study will help to promote 
more explainable AI in real-world clinical applications, where the knowledge of the decision factors is crucial. 

4. Degree of Progress 
100% 

5. Dissemination Level 
The Deliverable 4.2 is public. 
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